EU-funded FP6 Research projects on Antimicrobial Drug Resistance
Interested in European research?

Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and Spanish. A free sample copy or free subscription can be obtained from:
European Commission
Directorate-General for Research
Communication Unit
B-1049 Brussels
Fax (32-2) 29-58220
E-mail: research-eu@ec.europa.eu
Internet: http://ec.europa.eu/research/research-eu

EUROPEAN COMMISSION

Directorate-General for Research
Directorate Health
Unit Infectious Diseases

Contact: Rachida GHALOUCI
European Commission
Office CDMA 02/155
B-1049 Brussels
Tel. (32-2) 29-64826
Fax (32-2) 29-94561
E-mail: rachida.ghalouci@ec.europa.eu
EU-funded FP6 Research projects on Antimicrobial Drug Resistance
Table of Contents

Introduction

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS INTERNATIONAL</td>
<td>Implementing antibiotic strategies (ABS) for appropriate use of antibiotics in hospitals in member states of the European Union</td>
<td>8</td>
</tr>
<tr>
<td>ACE</td>
<td>Approaches to control multi-resistant enterococci: studies on molecular ecology, horizontal gene transfer, fitness and prevention</td>
<td>10</td>
</tr>
<tr>
<td>ACE-ART</td>
<td>Assessment and critical evaluation of antibiotic resistance transferability in food chain - ACE-ART</td>
<td>12</td>
</tr>
<tr>
<td>ActinoGEN</td>
<td>Integrating genomics-based applications to exploit actinomycetes as a resource for new antibiotics</td>
<td>14</td>
</tr>
<tr>
<td>AMIS</td>
<td>Antimicrobials by immune stimulation</td>
<td>16</td>
</tr>
<tr>
<td>ANTIBIOTARGET</td>
<td>Molecular and functional genomic approaches to novel antibacterial target discovery</td>
<td>17</td>
</tr>
<tr>
<td>BACELL HEALTH</td>
<td>Bacterial stress management relevant to infectious disease and biopharmaceuticals</td>
<td>19</td>
</tr>
<tr>
<td>BURDEN</td>
<td>Burden of resistance and disease in European nations</td>
<td>21</td>
</tr>
<tr>
<td>CanTrain</td>
<td>Host-pathogen interaction systems as tools to identify antifungal targets in C. albicans and C. dublieniensis</td>
<td>22</td>
</tr>
<tr>
<td>CHAMP</td>
<td>Changing behaviour of healthcare professionals and the general public towards a more prudent use of anti-microbial agents</td>
<td>24</td>
</tr>
<tr>
<td>COBRA</td>
<td>Combating resistance to antibiotics by broadening the knowledge on molecular mechanisms behind resistance to inhibitors of cell wall synthesis.</td>
<td>25</td>
</tr>
<tr>
<td>COMBIG-TOP</td>
<td>Combinatorial biosynthesis of industrial glycopeptides: technology, optimization and production</td>
<td>27</td>
</tr>
<tr>
<td>CombiGyrEase</td>
<td>Development of new gyrase inhibitors by combinatorial biosynthesis</td>
<td>29</td>
</tr>
<tr>
<td>CRAB</td>
<td>Combating resistance to antibiotics</td>
<td>31</td>
</tr>
<tr>
<td>DRESP2</td>
<td>Role of mobile genetic elements in the spread of antimicrobial drug resistance</td>
<td>32</td>
</tr>
<tr>
<td>e-Bug</td>
<td>Development and dissemination of a school antibiotic and hygiene education pack and website across Europe</td>
<td>33</td>
</tr>
<tr>
<td>EACCAD</td>
<td>European approach to combat outbreaks of Clostridium difficile associated diarrhoea by development of new diagnostic tests</td>
<td>35</td>
</tr>
<tr>
<td>EAR</td>
<td>Effects of antibiotic resistance on bacterial fitness, virulence and transmission</td>
<td>36</td>
</tr>
<tr>
<td>EARSS</td>
<td>The European antimicrobial resistance surveillance system</td>
<td>37</td>
</tr>
<tr>
<td>ERAPharm</td>
<td>Environmental risk assessment of pharmaceuticals</td>
<td>39</td>
</tr>
<tr>
<td>ESAC</td>
<td>European surveillance of antimicrobial consumption</td>
<td>41</td>
</tr>
<tr>
<td>ESSTI</td>
<td>European surveillance of sexually transmitted infections</td>
<td>43</td>
</tr>
</tbody>
</table>
ET-PA
Enabling techniques for the development of a novel class of protein antibiotics 45

EU-IBIS
Invasive bacterial infections surveillance in European Union 46

EUCAST
European committee on antimicrobial susceptibility testing 49

EUR-INTAFAr
Inhibition of new targets for fighting antibiotic resistance 51

EURESFUN
Integrated post-genomic approaches for the understanding, detection and prevention of antifungal drug resistance in fungal pathogens 53

EuResist
Integration of viral genomics with clinical data to predict response to anti-HIV treatment 55

Eurofungbase
Strategy to build up and maintain an integrated sustainable European fungal genomic database required for innovative genomics research on filamentous fungi important for biotechnology and human health 57

EPG
European virtual institute for functional genomics of bacterial pathogens – EuroPathoGenomics 59

EuropeHIVResistance
European cohort coordinating network on HIV drug resistance 60

EuroTB
Surveillance of tuberculosis in Europe 62

FUNGWALL
The fungal cell wall as a target for antifungal therapies 64

GENOSEPT
Genetics of sepsis in Europe 66

GRACE
Genomics to combat resistance against antibiotics in community-acquired LRTI in Europe 67

HAPPY AUDIT
Health alliance for prudent prescribing, yield and use of antimicrobial drugs in the treatment of respiratory tract infections 69

IPSE
Improving patient safety in Europe 71

LeishEpiNetSA
Control strategies for visceral leishmaniasis (VL) and mucocutaneous leishmaniasis (MCL) in South America: applications of molecular epidemiology 73

MagRSA
Fully automated and integrated microfluidic platform for real-time molecular diagnosis of methicillin-resistant Staphylococcus aureus 75

MalariaPorin
Validation of the plasmodium aquaglyceroporin as a drug target 76

MANASP
Development of novel management strategies for invasive aspergillosis 77

micro-MATRIX
Workshop on strategies to address antimicrobial resistance through the exploitation of microbial genomics 78

MOSAR
Mastering hospital antimicrobial resistance and its spread into the community 79

NewHiv Targets
Identifying novel classes of HIV inhibitors 81

NEWTBDRUGS
New drugs for persistent tuberculosis: exploitation of 3D structure of novel targets, lead optimisation and functional in vivo evaluation 82

NM4TB
New medicines for tuberculosis 83
NPARI
Tailoring of novel peptide coatings and therapeutics derived from a newly identified component of the human innate immunity against resistant infections 85

Phagevet-P
Veterinary phase therapies as alternatives to antibiotics in poultry production 86

PNEUMOPEP
New methods of treatment of antibiotic-resistant pneumococcal disease 88

PREVIS
Pneumococcal resistance epidemicity and virulence – an international study 89

READ-UP
Redox antimalarial drug discovery 91

REBAVAC
Novel opportunities to develop vaccines to control antibiotic resistant bacteria: from the trials back to the laboratory 92

REPLACE
Plants and their extracts and other natural alternatives to antimicrobials in feeds 93

SAFEWASTES
Evaluating physiological and environmental consequences of using organic wastes after technological processing in diets for livestock and humans 95

SavinMucoPath
Novel therapeutic and prophylactic strategies to control mucosal infections by South American bacterial strains 96

SIGMAL
Targeting malaria transmission through interference with signalling in Plasmodium falciparum gametocytogenesis 98

SLIC
Biosensors in molecular diagnostics nanotechnology for the analysis of species-specific microbial transcripts 100

StaphDynamics
Functional genomic characterisation of molecular determinants for staphylococcal fitness, virulence and drug resistance 101

Tat machine
Functional genomic characterisation of the bacterial Tat complex 103

TB Treatment Marker
Establishing a TB treatment efficacy marker 105

TB-DRUG OLIGOCOLOR
Development of a molecular platform for the simultaneous detection of Mycobacterium tuberculosis resistance to rifampicin and fluoroquinolones 106

TRAINAU
Training risk assessment in non-human antimicrobial usage 107

TRIoH
Targeting replication and integration of HIV 109

Tuberculosis China
The diversity of Mycobacterium tuberculosis strains in China: tracing the origins of the worldwide dispersion of the multidrug-resistant Beijing genotype 111

UNITE-MORE
Uniformity in testing and monitoring HIV resistance 112

VIRGIL
European vigilance network for the management of antiviral drug resistance 113

VIROLAB
A virtual lab for decision support in viral diseases treatment 116

VITBIOMAL
Vitamin biosynthesis as a target for antimalarial therapy 117

Index of Acronyms 118

Index of Coordinators 119
INTRODUCTION

COMBATING ANTIMICROBIAL DRUG RESISTANCE

The discovery and use of antibiotics has had an enormous impact on our healthcare system. Nowadays, the treatment and prevention of microbial infections fully depends on the availability of effective antibiotics. In addition to this, advanced surgical procedures like organ transplants, cancer chemotherapy and care of preterm babies heavily rely on effective antibiotics. Unfortunately, the emergence of and rise in resistance to the currently available antimicrobial drugs threatens the treatment of both hospital- and community-acquired bacterial infections and endangers many modern medical practices. This situation is further aggravated by a sharp decline in the discovery of new antimicrobial drugs needed to overcome drug resistance. Such developments represent a looming crisis for our healthcare system.

It is crucial to contain antimicrobial drug resistance (AMDR) and to nourish research aimed at combating it. This research need has been addressed within the EU framework programmes where AMDR has been given a high priority over the last decade with significant financial support from the Health Directorate of the Directorate-General for Research (DG RTD) in the European Commission.

The development and spread of AMDR are amongst the areas that are currently being investigated together with novel evidence-based approaches to managing patients with a view to optimising antibiotic use.
In addition, the discovery and development of novel antimicrobial drugs and the identification of their molecular targets are areas that have attracted funding. This is of prime importance since only few antimicrobial agents have been launched during the last 30 to 40 years. Under-investment in antibiotic research and development by the pharmaceutical industry has contributed to this problem. The research projects that are supported by the Health Directorate of DG RTD aim to form and support multidisciplinary collaborations, obtain a critical mass of researchers investigating AMDR within Europe and mobilise the European biotech industry.

The project catalogue contains information about AMDR projects funded under the Sixth Framework Programme (FP6). It provides an overview of the scientific challenges, the research goals addressed and the expected outcome of projects. The information presented also shows the involvement and participation of a multitude of small and medium-sized enterprises (SMEs) working in close collaboration with the academic institutions. The concerted efforts of the research consortia will most likely result in significant advances in three distinct areas. Firstly, a more appropriate use of currently available antibiotics is aimed at in order for these drugs to remain effective as long as possible. Secondly, an increase of our current knowledge of the biological processes that underlie AMDR will result from several projects that have received funding. Within such projects attention is also being paid to the transfer of resistance as well as the biological costs (fitness costs) of resistance. The third area concerns the development of novel antimicrobial drugs that will benefit from research projects that aim to identify compounds capable of inhibiting processes that are essential for bacterial growth or projects explore natural resources to obtain new antimicrobials.

Under FP6, the total EC contribution committed to discovery and translational research activities for projects that specifically focus on AMDR or on certain aspects of AMDR is more than EUR 160 million. In addition, several closely related projects funded by the Directorate-General for Health and Consumer Protection (SANCO) are also included for a comprehensive overview of the scope of Community funding in this field. However, although vaccination may have a significant impact on reduced use of antibiotics, no vaccine research projects have been included in this compilation.

Research projects in this catalogue are of prime importance since this type of research is essential for a continuation of the effective control of bacterial infections that is required to sustain our current high level of medical care as well as public trust in our healthcare system.
BACKGROUND

The ABS INTERNATIONAL project sought to further develop organisational competencies regarding adequate antibiotic use in the cooperating hospitals of the partner countries, as well the qualification of doctors and pharmacists in adequate antibiotic use. Through eight Work Packages (WPs), the project developed and validated quality indicators and process measures for antibiotic use.

Problem:

In human medicine, the use of antibacterial agents for the treatment of viral infections and the unjustified use of substances with an extremely broad activity spectrum are regarded as the main causes (among others) of the resistance problem.

AIMS

The general objectives of the project were:

- to develop organisational tools and qualified capacities for identifying and distributing best practice on the prudent use of antimicrobial agents in human medicine in hospitals;
- to enhance and implement specific strategies for the prudent use of antimicrobial agents in hospitals;
- to elaborate methods for evaluating the applied antimicrobial strategies;
- to disseminate project results.

EU Project:

ABS International

1.1 Project Management
1.2 Dissemination of Results
1.3 Evaluation of the Project
1.4 Planning and Preparation
1.5 Process Measures/QI for AB Use
1.6 Preparation per Partner Country
1.7 Implementation per Partner Country
1.8 Preparation of the postproject phase

- Project number: 2005208
- EC contribution: €798,598
- Duration: 24 months
- Starting date: 1 September 2006
The main deliverables of the project include:

- standards for ABS Tools;
- ABS training and ABS consulting for cooperating hospitals;
- country reports on the results of the ABS maturity survey;
- ‘Guidelines to Further Develop and Define Antibiotic Use in Hospitals’;
- ABS expert network.

ABS INTERNATIONAL is further developing the strategy for the prudent use of antimicrobial agents in hospitals and for the distribution of best practice including training among 9 countries of the European Union, 4 of which are new Member States.

Project Coordinator

Prof. Dr Roland Gareis and Mag. Annegret Frank
Roland Gareis Consulting
Silbergasse 30
1190 Vienna, Austria
Tel. +43 13677022-0
Fax +43 13677022-70
E-mail: Roland.gareis@rgc.at

Partners

Allerberger Franz, Burgmann Heinz, Janata Oskar, Lechner Arno, Krause Robert, Mittermayer Helmut, Watschinger Regina, Wechsler-Fördös Agnes, Wenisch Christoph
ABS Group
Vienna, Austria

Dr. Cizman Milan
University Medical Center
Ljubljana, Slovenia

Dr. Cornaglia Giuseppe
University of Verona
Verona, Italy

Prof. Hryniewicz Waleria
National Institute of Public Health
Warsaw, Poland

Dr. Jindrak Vlastimil
Na Homolce Hospital
Prague, Czech Republic

Dr. Kern Winfried
University Hospital Freiburg
Freiburg, Germany

Dr. Mechtler Reli
Johannes Kepler University Linz
Linz, Austria

Prof. Struelems Marc
Hôpital Erasme Bruxelles
Brussels, Belgium

Prof. Ternak Gabor
University of Pecs
Pecs, Hungary

Prof. Vladimir Krcmery
St Elizabeth University of Health
Bratislava, Slovakia
Background

Genetic population analyses of Enterococcus faecium revealed the presence of a High-Risk Enterococcal Clonal Complex (HiRECC) resistant to multiple antibiotics and responsible for most nosocomial VRE (vancomycin-resistant E. faecium and Enterococcus faecalis) infections and hospital outbreaks worldwide. In ACE, the evolutionary development of HiRECC in E. faecium and E. faecalis will be further unraveled and combined with new knowledge on intra- and inter-species gene transfer, and biological fitness costs of hospital adaptation.

Problem:
Nosocomial VRE infections are rising in Europe, with proportions of more than 10% among enterococcal bloodstream infections in 9 countries in 2005 (Fig. 1).

Aims
The main project objectives include:

■ determining the population structure of enterococci and the evolutionary development of HiRECC;
■ improving understanding of the biological fitness costs of hospital adaptation of Enterococci.

Expected results
The results ACE expects include:

■ a typing scheme for resistant plasmids to construct a catalogue of resistance determinants, transposons, and plasmids present in different host groups.

Potential applications:
ACE is expected to contribute to new strategies that will reduce the spread of resistance and infections, and create an opportunity to develop vaccination which could prevent infection and colonisation, respectively, with multi-resistant HiRECC.

Project Co-ordinators
Prof. Marc J. M. Bonten and Dr Rob J. L. Willems
Eijkman-Winkler Laboratory for Microbiology, Infectious Diseases and Inflammation
Heidelberglaan 100, Room G04.614
3584 CX Utrecht, Netherlands
Tel. +31 2507394; +31 2507630
Fax +31 2541770
Email: mbonten@umcutrecht.nl; r.willems@umcutrecht.nl

Partners
Dr Anette Marie Hammerum
National Center for Antimicrobials and Infection Control
Copenhagen, Denmark

Dr Lars Jensen
Technical University of Denmark
Copenhagen, Denmark

Prof. Arnfinn Sundsfjord
Universitetet I Tromsoe
Tromso, Norway

Prof. Ingolf Nes
Universitetet for Miljo og Biovitenskap
As, Norway

Project number: LSHE-CT-2007-037410 ■ EC contribution: €3 148 000 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 February 2007
Figure 1. Proportion vancomycin non-susceptible enterococcal blood isolates, EARSS 2005 (www.earss.rivm.nl).
BACKGROUND
The ACE-ART project aimed to provide a critical evaluation of the impact on non-pathogenic bacteria of antibiotic use in agriculture, and in the prophylaxis and treatment of disease in humans. The consortium established collaboration with the Joint Action Team of the International Organization for Standardization (ISO) and the International Dairy Federation (FIL/IDF).

A total of four Work Packages (WPs) focused on the development of standardised phenotypic procedures, the validation of model systems for gene transfer evaluation, the genetic basis of the detected resistances and transmission mechanisms, and the dissemination of project results.

Problem:
The emergence and evolution of antibiotic resistance in bacteria represents a major financial and societal cost. Despite concern that the use of antibiotics in the food chain contributes to the development of resistant bacteria, research has yet to provide the data necessary for the development of an effective risk management strategy. Risk assessment of antibiotic resistant, non-pathogenic bacteria present in the food chain requires data on the sources of these bacteria, their genetic composition and potential for resistance transfer. The assessment of drug resistance is a mandatory requirement in the approval process of EFSA for bacterial feed additives and plant protecting agents.

AIMS
ACE-ART aimed to provide a critical evaluation of the role of antibiotic use in agriculture, and in the prophylaxis and treatment of disease in humans. Unlike other studies, focused on pathogens, this project is focused on non-pathogenic bacteria. Strains belonging to Lactobacillus, Bifidobacterium, Lactococcus and Streptococcus thermophilus have been used as they can be found in a wide range of habitats. Moreover, they are industrially important bacteria, used as starter cultures for fermented food. Within this project the importance of these bacteria as a source of antibiotic resistance genes (Work package 1) will be assessed. The project will also examine the transmission of resistance in the environment and in the animal and human gut (WP 2) and establish the genetic basis of the detected resistances and transmission mechanisms (WP 3). Dissemination of results and links with consumers’ organization will be provided by WP4; an industrial platform will assure the link with 14 industries producing starter cultures. This research will sought to establish a dataset on the occurrence and transmission of antibiotic resistance, providing the scientific basis for an antibiotic application strategy to inhibit the further development of resistance in pathogenic bacteria.

Project number: CT-2003- 506214 EC contribution: €2 462 000
Duration: 36 months (+6 of extension) Type: Specific Targeted Research Project
Starting date: 1 January 2004
OBTAINED RESULTS
A phenotypic procedure to evaluate the drug resistance profile of food bacteria was developed; this procedure is now the ISO method. New MIC were provided to the European Food Safety Authority (EFSA) for safety evaluation of these bacteria; data provided by ACE-ART has been used to update the guidelines for bacterial safety evaluation. This achievement is significant, as this support to EU policy was a project objective.

Potential applications:
Methodology developed by ACE-ART and MIC can be used by the industry in the process for developing new starter or probiotic bacteria.

Project Coordinator
Prof. Lorenzo Morelli
Istituto di Microbiologia
Università Cattolica Sacro Cuore
Via Emilia Parmense 84
29100 Piacenza, Italy
Tel: +39 0523599248
Fax: +39 0523599246
E-mail: lorenzo.morelli@unicatt.it

Partners
Dr Andrea Wilcks
Danish Institute for Food and Veterinary Research
Søborg, Denmark

Dr Eric Johansen
Chr. Hansen A/S
Hørsholm, Denmark

Dr Abelardo Margolles
Instituto de Productos Lácteos de Asturias (IPLA)
Villaviciosa, Asturias, Spain

Dr Maria Saarela
VTT Biotechnology
(VTT Technical Research Centre of Finland)
Espoo, Finland

Prof. Karen A. Krogfelt
Statens Serum Institut
Copenhagen, Denmark

Dr Lars Axelsson
Norwegian Food Research Institute
Osloveien, Norway

Prof. Jacek Bardowski
Instytut Biochemii i Biofizyki PAN
Warsaw, Poland

Dr Declan Bolton
TEAGASC – The National Food Centre
Dublin 15, Ireland

Dr Henricus Jojef Maria Aarts
RIKILT Institute of Food Safety – MCB
Wageningen, Netherlands

Prof. Atte Johannes von Wright
University of Kuopio
Kuopio, Finland

Dr Wolfgang Kneifel
University of Natural Resources and Applied Life Sciences
Vienna, Austria

Prof. Jean Swings
Ghent University
Ghent, Belgium

Dr Sven E. Lindgren
Swedish National Food Administration
Uppsala, Sweden
INTEGRATING GENOMICS-BASED APPLICATIONS TO EXPLOIT ACTINOMYCETES AS A RESOURCE FOR NEW ANTIBIOTICS

http://www.swan.ac.uk/research/ActinoGEN/

BACKGROUND
ActinoGEN is an Integrated Project aimed at developing novel genomics-based approaches to exploit hitherto overlooked genetic resources for new antibiotics. To greatly accelerate the drug discovery process, a parallel strategy will be to engineer generic hosts optimised to produce high antibiotic yields. With the complete genome sequence of the model actinomycete, Streptomyces coelicolor, and mobilisation of a pan-European effort to apply newly developed multidisciplinary post-genomic technologies, a holistic understanding of the physiology and regulation of antibiotic biosynthesis is achievable for the first time. This will, in turn, permit rational intervention to engineer generic hosts for high-yield antibiotic production. This synergy of discovery linked to overproduction will place the European biotechnology sector at the forefront of developing much-needed new antibiotics to combat multi-drug resistant pathogens.

Problem:
Multiple drug-resistant bacteria are a major threat to human health and a significant burden on already stretched medical budgets. This threat is predicted to increase in severity. Of major concern are antibiotic-resistant nosocomial infections.

AIMS
The aim of ActinoGEN is to combine new functional genomic technologies with chemical analysis in an integrated multidisciplinary approach. ActinoGEN proposes three parallel objectives to discover and develop new antibiotics based on exploiting the genetic resources of actinomycetes:

1. activate cryptic antibiotic biosynthetic pathways;
2. rely on the discovery of new antibiotic biosynthetic pathways from diverse actinomycetes;
3. follow through on combining biosynthetic pathways to direct synthesis of new antimicrobials.

EXPECTED RESULTS
ActinoGEN expects to achieve the following results, among others:

1. establishment of generic procedures for the activation of cryptic antibiotic biosynthetic pathways;
2. expression of a variety of heterologous cryptic pathways after their transfer to defined superhost antibiotic production strains;
3. establishment of refined genomic-based procedures for analysis of metagenomes to identify new antibiotic biosynthetic pathways;
4. optimised expression of new combinatorial antibiotics, together with structural analysis and antimicrobial spectra;
5. generic antibiotic production superhosts derived by rational genomics-driven manipulation of S. coelicolor;
6. refined superhost strains optimised for production of key new antimicrobials.

Project number: LSHM-CT-2004-005224 EC contribution: €9 384 133
Duration: 60 months Type: Integrated Project Starting date: 1 January 2005
Potential applications:
The development of new technologies for antibiotic discovery and production will benefit European small and medium-sized enterprises (SMEs) in the biotechnology sector. Application of these new genomics-based procedures and technologies for discovery and exploitation of natural products can provide a platform for a renaissance in drug discovery after 15 years of stagnation. New antimicrobials discovered in the course of the project can potentially help alleviate the current crisis in treatment of multiple drug-resistant pathogens.

Project Coordinator

Prof. Paul Dyson
Swansea University
School of Medicine
Institute of Life Science
Singleton Park
Swansea, SA2 8PP, Wales, UK

Tel. +44 1792295667
Fax +44 1792602280
E-mail: p.j.dyson@swansea.ac.uk

Partners

Prof. Mervyn Bibb
John Innes Centre
Norwich, England, UK
Dr Jiri Vohradsky
Academy of Sciences of the Czech Republic
Prague, Czech Republic

Prof. Douglas Kell
University of Manchester Institute of Science and Technology
Manchester, England, UK

Dr Anna Eliasson Lantz
Technical University of Denmark
Kgs. Lyngby, Denmark

Dr Greg Challis
University of Warwick
Coventry, England, UK

Prof. Wolfgang Wohlleben, Dr Jens Reuther, Prof. Lutz Heide
Eberhard Karls-Universität Tübingen
Tübingen, Germany

Prof. Colin Smith
University of Surrey
Guildford, England, UK

Prof. Anna Maria Puglia
Universita di Palermo
Palermo, Italy

Prof. Lubbert Dijkhuizen and Dr Eriko Takano
Groningen Biomolecular Science and Biotechnology Institute, Rijksuniversiteit Groningen, Netherlands

Dr Marie-Joelle Virolle and Prof. Jean-Luc Pernodet
Université Paris-Sud
Orsay, France

Dr Roderich Süßmuth
Technische Universität Berlin
Berlin, Germany

Dr Francisco Moris
EntreChem SL
Mieres, Spain

Prof. José Salas
Universidad de Oviedo
Oviedo, Spain

Prof. Juan Francisco Martin
Institute of Biotechnology of León
León, Spain

Prof. Pierre Leblond and Dr Bertrand Aigle
Institut National
de la Recherche Agronomique (INRA)
Vandoeuvre les Nancy, France

Dr Renaud Nalin
Libragen
Villeurbanne, France

Prof. Kye Joon Lee
Seoul National University
Seoul, South Korea
BACKGROUND
AMIS sought to use the strength of the innate immune system to design antimicrobial drugs for future generations. Antimicrobial proteins are often combined with inflammatory signals in one single molecule. AMIS took that same approach and reshuffled different parts of different molecules to make novel effector molecules that still have these combined functions but are optimally adapted for therapeutic intervention. The consortium selected the most promising and innovative compounds with this dual mode of action.

Problem:
The success with which antibiotics have been used to combat infectious diseases is under serious threat from the increasing development of antimicrobial resistance. To fight infectious diseases effectively, we have to broaden the approaches in therapeutic intervention.

AIMS
Activators, receptors, effectors and inhibitors are an integral part of the complex mechanism of interaction in the innate immune system, combining cellular stimulation and anti-microbial action. These interaction mechanisms formed the core focus of AMIS.

EXPECTED RESULTS
The partners expect to make an array of fusion proteins that combine strong antimicrobial with inflammatory signals so that these two actions work in concert. Furthermore, the consortium will investigate how the innate immune system can effectively recognise and kill a bacterium without developing major resistance.

Potential applications:
The collaborative research will lead to proof-of-principle for a novel treatment approach to address antimicrobial resistance by combining the innate immuno-stimulation with the antimicrobial capacity of naturally occurring substances of the human innate immune system.

Project Coordinator
Dr Jos van Strijp
University Medical Centre Utrecht
Eijkman Winkler Institute
Heidelberglaan 100
3584 CX Utrecht, Netherlands
Tel. +31 302506528
Fax +31 302541770
E-mail: j.vanstrijp@azu.nl

Partners
Prof. Martin Krönke
University of Cologne
Cologne, Germany

Prof. Terje Espervik
Norwegian University of Science and Technology
Trondheim, Norway

Prof. Andreas Peschel
University Hospital Tübingen
Tübingen, Germany

Prof. Lars Björck
Lund University
Lund, Sweden

Dr Henk P. Haagsman
Utrecht University
Utrecht, Netherlands

Dr Peter Antal-Szalmas
University of Debrecen
Debrecen, Hungary

Dr Herman Groen
IQ Corp
Groningen, Netherlands

Dr Shai Yarkoni
Target-In Ltd
Kfar Saba, Israel
The ANTIBIOTARGET project will establish an innovative research-driven training programme in state-of-the-art technologies in the fields of molecular bacterial pathogenicity, functional genomics and biological chemistry directed towards the development of novel antibacterial therapies which combat the disease-causing and natural antibiotic resistance capacity of pathogenic bacteria.

Problem:
Infectious diseases account for more than 13 million deaths a year (one in two deaths in developing countries) and are the main causes of mortality and morbidity around the world. Increasing human mobility and changing social patterns as well as the increasing number of immunocompromised individuals as a result of ageing populations, AIDs and advances in surgery and cancer chemotherapy, have all increased the spread and risk of infection. Furthermore, the WHO has stated that “no population is more vulnerable to multi-drug resistance than those admitted to hospital wards”. Consequently, the spread of antibiotic resistant bacteria in hospitals means that medical procedures once previously taken for granted may have to be abandoned with enormous impacts on morbidity and mortality.

The emergence of multi-antibiotic resistant bacteria and the failure of drug discovery programmes over the last 10 years to provide new broad-spectrum antibiotics with novel modes of action is a major threat to public health worldwide.

AIMS
The research project will focus on Pseudomonas aeruginosa as a model pathogen since it is an important, intrinsically resistant Gram negative bacterium responsible for high infection rates in humans within the hospital environment, has a completely sequenced genome, is highly amenable to genetic manipulation and the ANTIBIOTARGET partners are all recognized international research leaders in the molecular biology, biochemistry, genetics and pathogenicity of Pseudomonas. In addition, the ubiquitiness of this organism would make any new discoveries potentially applicable to other nosocomial pathogens. Given the major threat to human health posed by multi-antibiotic resistance, the strategies used in this project will offer not only a timely opportunity to discover new antibacterial targets but also to provide a pool of highly skilled scientists with specific expertise directed towards the discovery of novel anti-infective agents.

ANTIBIOTARGET will identify targets involved in promoting or regulating attachment, the biofilm lifestyle, virulence, and intrinsic antibiotic resistance, and will develop strategies for discovering new agents that inhibit the ability of bacteria to colonise tissues, cause disease and resist conventional antibiotics.

- **Project number:** MEST-CT-2005-020278
 - **EC contribution:** €2 171 791
 - **Duration:** 48 months
 - **Type:** Marie Curie Actions-Early-Stage Training
 - **Starting date:** 1 March 2006
EXPECTED RESULTS

Using the *Pseudomonas aeruginosa* as a model pathogen, ANTIBIOTARGET will:

- identify key genes contributing to attachment, biofilm formation, intrinsic resistance, virulence and damage to the host;
- engineer biosensor systems for the screening of novel agents that will inhibit the infection process;
- identify natural products, enzymes and small compounds inhibiting attachment, virulence, biofilm development and promoting antibiotic susceptibility;
- develop large-scale production of pharmaceutical products identified in this project for industrial use.

Potential applications:

ANTIBIOTARGET will help the scientific community to better understand the molecular mechanisms used by *P. aeruginosa* to cause disease, and the results will be directly applicable to other bacteria of relevance to public health. The project will also generate a number of new biosensor systems in *Pseudomonas* which will be exploited for the screening of novel inhibitors of virulence factor production, as well as develop ‘designer’ organisms to increase the production of proteins and chemical compounds that can be used therapeutically to treat *Pseudomonas* infections.

Project Coordinator

Prof. Miguel Cámara
Institute of Infection, Immunity and Inflammation
School of Molecular Medical Sciences
Centre for Biomolecular Sciences
University of Nottingham
Nottingham, England, UK
Tel. +44 115951 036
Fax +44 1158467951
E-mail: miguel.camara@nottingham.ac.uk

Partners

Dr Romé Voulhoux
IBSM-CNRS
Marseille, France

Prof. Wim Quax
University of Groningen
Groningen, Netherlands

Prof. Karl Jaeger
Heinrich-Heine-Universität Düsseldorf
Forschungszentrum Jülich
Jülich, Germany

Prof. Alain Filloux
Imperial College London
London, England, UK
BACKGROUND
The BACELL HEALTH project was designed to gain new knowledge in the field of bacterial cell biology for the development of new products and processes. The project aimed to address both the harmful and beneficial characteristics of bacterial behaviour by undertaking an integrated and in-depth study of the response of Gram-positive bacteria to stress.

The consortium created four experimental Work Packages (WPs), each with specific milestones and deliverables: WP1 focused on a detailed understanding of how *B. subtilis* regulates its metabolism in response to environmental stresses; WP2 aimed to unravel the regulatory and biochemical processes that pathogens related to *B. subtilis* need to ‘top up’ these responses; WP3 aimed at improving the ability of commercial strains of *B. subtilis* and its close relatives to produce biopharmaceuticals; and WP4 focused on comparative genomics and network modelling.

Problem:
The major challenge for the BACELL HEALTH consortium was to understand how individual regulatory pathways are networked to maintain cellular homeostasis, using state-of-the-art post-genomic technologies; this is known as the *Cell Stress Management System*.

AIMS
The primary objective was to develop a detailed understanding of the integrative Cell Stress Management System and associated stress resistance processes that are essential for sustaining bacteria as effective pathogens or producers of pharmaceutically active proteins and peptides.

EXPECTED AND OBTAINED RESULTS
The project will develop an understanding of the regulatory networks underlying the response of environmental bacteria and pathogens to stresses encountered during infection and commercial bioprocesses.

Potential applications:
Potential new targets for antimicrobial drugs, improved production of bioactive proteins and peptides, improved commercial production strains.
Project Coordinator

Prof. Colin Harwood
Cell and Molecular Biosciences
Newcastle University
Framlington Place
Newcastle upon Tyne, England, UK
Tel. +44 1912227708
Fax +44 1912227736
E-mail: colin.harwood@ncl.ac.uk

Partners

Prof. Kevin Devine
Smurfit Institute
Trinity College Dublin
Dublin, Ireland

Prof. Mohamed Marahiel
Philipps Universität Marburg
Marburg, Germany

Prof. Wolfgang Schumann
Bayreuth University
Bayreuth, Germany

Dr Tarek Msadek
Institut Pasteur
Paris, France

Prof. Michael Hecker
Universität Greifswald
Greifswald, Germany

Dr Marc Kolkman
Danisco/Genencor
Leiden, Netherlands

Dr M.D. Rasmussen
Novozymes A/S
Bagsværd, Denmark

Dr Rocky Cranenburgh
Cobra Biomanufacturing
Keele, England, UK

Prof. Jan Marteen van Dijl
and Prof. Oscar Kuipers
Groningen University
Groningen, Netherlands
BACKGROUND
The emergence and spread of antimicrobial resistance (AMR) has become a major public health threat, and infections caused by antimicrobial resistant pathogens continue to increase in the EU and abroad. These infections cause suffering, incapacity and death, and impose an enormous financial burden on both healthcare systems and on society in general. The aim of the BURDEN project is to provide realistic estimates of the burden of disease and the costs to societies attributable to infections caused by antimicrobial resistant pathogens in member states and accession countries of the European Union.

Problem:
There is a lack of data on the treatment outcomes in infections due to antibiotic resistant pathogens, in terms of attributable mortality, prolongation of hospital care and, above all, on the economic consequences for individuals and healthcare systems and societies.

AIMS
The main specific objectives of BURDEN are:

- to generate country-specific cost models for quantifying the economic loss due to AMR;
- to determine the excess mortality, morbidity, length of stay and costs attributable to AMR;
- to present the financial impact of AMR on care in European hospitals.

EXPECTED RESULTS
The results the BURDEN partners expect include:

- identification, on a country-by-country basis, of information needs of different stakeholders for their own assessment of the burden of infectious diseases caused by antimicrobial susceptible and resistant bacterial pathogens;
- identification of incentives and counterincentives that impinge on efforts to control the spread of AMR;
- demonstration of the human and societal dimensions of infections caused by resistant pathogens and the repercussions for the healthcare systems.

Potential application:
Politicians, policymakers and public health experts will be provided with valid data in order to prioritise and plan future health political goals, as against other specific causes of morbidity and mortality in Europe.

Project Coordinator
Prof. Dr Uwe Frank
University Hospital Freiburg
Institute of Environmental Medicine and Hospital Epidemiology
Freiburg, Germany
Tel. +49 761 270 8210
E-mail: uwe.frank@uniklinik-freiburg.de

Partners:
Prof. Peter Davey
University of Dundee
Dundee, Scotland, UK
Dr Carl Suetens
Institute of Public Health
Brussels, Belgium
Prof. Hajo Grundmann
National Institute of Public Health and the Environment
Bilthoven, Netherlands
Prof. Dr Martin Schumacher
Universitätsklinikum Freiburg
Freiburg, Germany
BACKGROUND
The CanTrain network trained both early and experienced researchers in the methodologies necessary for drug development, including target identification and development of cell-based screening assays.

CanTrain addressed infectious diseases caused by fungal pathogens, and attempted to establish approaches leading to novel anti-fungal compounds by combining the expertise of 11 partners in cellular sensor systems and signalling pathways controlling morphogenesis and virulence, model systems for host-pathogen interaction, assay development and drug screening technologies.

AIMS
The main objective of this network is to train both early and experienced researchers in the methodologies of drug development starting from target identification, target validation, development of screening assays and drug screening up to the identification of lead compounds. CanTrain aimed to develop new screens and cell-based assays for identifying novel antifungal substances. The training gained was transferable to all fields involving drug screening.

The major research objectives can be outlined as follows:

- **Objective 1** - To identify and characterize *C. albicans* and *C. dubliniensis* membrane transporters and sensors as well as downstream components which are important for the expression of virulent traits. To perform comparative genomics of *C. albicans* and *C. dubliniensis* to identify genes absent in the less virulent *C. dubliniensis*.

- **Objective 2** - To study the virulence of wild type and respective isogenic mutant *C. albicans* and *C. dubliniensis* strains using human reconstituted tissue systems and mouse macrophages as model systems.

- **Objective 3** - To study the molecular basis of host-pathogen interaction and virulence using transcriptional profiling, proteomics and biochemical approaches.

- **Objective 4** - To develop new cell-based assays for identifying potential novel antifungal substances in the context of host-pathogen interaction, including assay validation with clinical *C. albicans* and *C. dubliniensis* isolates and known antifungal drugs and screening using combinatorial compound libraries.

EXPECTED AND OBTAINED RESULTS
The partners bridged the gap between environmental stimuli inducing infection mechanism and the signal transduction pathways triggered by these stimuli. They also characterised a G protein-coupled receptor that is important for the yeast-to-hyphae transition on solid medium, and identified several potential new targets for antifungal drug discovery in both *C. albicans* and *C. dubliniensis*.

Project number: MRTN-CT-2004-512481 **EC contribution:** €2 689 991 **Duration:** 48 months **Type:** Marie-Curie Research Training Network **Starting date:** 1 March 2005
A number of training courses were organised, including an in vitro biofilm course and a bioinformatics and microarray analysis course.

Project Coordinator

Prof. Patrick Van Dijck
Department of Molecular Microbiology, VIB
Laboratory of Molecular Cell Biology, K.U. Leuven
Institute for Botany and Microbiology
Kasteelpark Arenberg 31
3001 Leuven, Belgium
Tel. +32 16321512
Fax +32 16321979
E-mail: Patrick.vandijck@bio.kuleuven.be

Dr Derek Sullivan
Dublin Dental School & Hospital, Trinity College
Dublin 2, Ireland

Prof. Hana Sychrova
The Academy of Sciences of the Czech Republic
Prague 4, Czech Republic

Prof. Helena Bujdakova
Comenius University
Bratislava, Slovakia

Dr Renate Spohn
EMC microcollections GmbH
Tübingen, Germany

Partners

Dr Steffen Rupp
Fraunhofer IGB
Stuttgart, Germany

Prof. Per Ljungdahl
Stockholm University
Stockholm, Sweden

Dr Rosalia Diez-Orejas
Universidad Complutense de Madrid
Madrid, Spain

Prof. Lubomira Stateva
University of Manchester
Manchester, England, UK

Prof. Karl Kuchler
Medical University Vienna
Vienna, Austria

Prof. Laura Popolo
Università di Milano
Milan, Italy
CHANGING BEHAVIOUR OF HEALTHCARE PROFESSIONALS AND THE GENERAL PUBLIC TOWARDS A MORE PRUDENT USE OF ANTI-MICROBIAL AGENTS

BACKGROUND
CHAMP aims to promote the appropriate use of antibiotics by developing effective tools to change the behaviour of healthcare professionals, patients in primary care, and the general public on the prescription and use of antibiotics.

Problem:
Antibiotics are priority drugs and bacterial resistance is a major public health issue, and antibiotic consumption is a key driver of resistance, although the relationships are complex.

AIMS
CHAMP aims to promote, through a series of seven Work Packages, the appropriate use of antibiotics by developing effective tools to effect behavioural changes of healthcare professionals, patients in primary care, and the general public on the prescription and use of antibiotics.

EXPECTED AND OBTAINED RESULTS
CHAMP will produce an inventory of attitudes and expectations of both healthcare professionals and patients in primary care on antibiotic treatment in respiratory and urinary tract infections. It will also provide a state-of-the-art overview of behavioural interventions and public campaigns on antibiotic use and determinants of success and failure. Experts will formulate evidence-based advice to the Commission on the preferred policy in order to improve antibiotic use in European primary care.

Potential applications:
The CHAMP final report can be used to formulate future European policy in this field and to serve as a basis for national and regional strategies.

Project Coordinator
Prof. Th.J.M. Verheij
Julius Center for Health Sciences and Primary Care
University Medical Center Utrecht
PO Box 85500
3508 GA Utrecht, Netherlands
Tel. +31 887568188
Fax: +31 88 7568099
E-mail: th.j.m.verheij@umcutrecht.nl

Partners
Prof. Herman Goossens
Universiteit Antwerpen
Antwerp, Belgium

Prof. Paul Little
University of Southampton
Southampton, England, UK

Prof. Christopher Butler
Cardiff University
Cardiff, Wales, UK

Prof. Joanna Coast
University of Birmingham
Birmingham, England, UK

Prof. Richard Smith
London School of Hygiene & Tropical Medicine
London, England, UK

Dr Maciek Godycki-Cwirko
Medical University of Lodz
Lodz, Poland

Dr Stephen Harbarth
Hôpitaux Universitaires de Genève
Geneva, Switzerland

Prof. Denise de Ridder
Utrecht University
Utrecht, Netherlands

Prof. Francesco Blasi
Università degli Studi di Milano
Milan, Italy

Prof. Jesús Rodríguez-Marín
Universidad Miguel Hernández de Elche
Elche (Alicante), Spain
COMBATING RESISTANCE TO ANTIBIOTICS BY BROADENING THE KNOWLEDGE ON MOLECULAR MECHANISMS BEHIND RESISTANCE TO INHIBITORS OF CELL WALL SYNTHESIS.

BACKGROUND
COBRA targeted the elucidation of the molecular mechanisms of resistance to inhibitors of cell wall synthesis in bacteria responsible for severe nosocomial and community-acquired infections. Our STREP was focused on β-lactams, the major class of antibiotics in current clinical use, and on resistance due to modifications of the cell wall synthesizing machinery and to production of β-lactamases, the most prevalent mechanisms in Gram-positive and Gram-negative bacteria, respectively.

Problem:
Antibiotics are not like other drugs in that they act against bacteria and not the human host. Therefore the evolution of resistance under the selective pressure of antibiotics after exposure of populations (human, animal) raises major therapeutical issues. This program addresses the general problem of resistance to antibiotics and concerns the understanding of the mechanisms of resistance, in particular to inhibitors of cell wall synthesis. Among these are the β-lactams, one of the most important classes of antibiotics, if not the most broadly used antibiotics worldwide. The rates of β-lactam resistance for many common species found in infections have reached high levels in the community, as well as in the hospital. While In Gram-positive organisms this resistance is mainly due to altered targets, in Gram-negative organisms, acquired resistance to β-lactams is essentially due to the presence of plasmid-encoded β-lactamases or the over-expression of chromosome-encoded β-lactamases. This latter resistance can be enhanced by associated impermeability or efflux mechanisms. Since many pathogens are multiresistant, there will be an eventual limitation in the choice of antibiotics useful for primary treatment and therefore a promotion of a vicious cycle facilitating the emergence of new resistances.

AIMS
COBRA focused on the understanding of molecular mechanisms of resistance to β-lactams and other cell wall inhibitors in clinical Gram-positive and Gram-negative pathogens.

EXPECTED AND OBTAINED RESULTS
The results anticipated by the COBRA partners included:

- understanding the role of amino acid residues in PBPs that are essential for the expression of resistance and their contribution to the structure of the PBP D, D-transpeptidase domains;
- understanding the genetic environment of the β-lactamase genes and its contribution to expression of resistance and gene dissemination.

Potential applications:
The transmission and acquisition of resistance by new strains is one of the major factors in resistance dissemination. Understanding of the transmission mechanisms is a crucial step in preventing resistance and guiding optimal antibiotic usage.

Project number: LSHM-CT-2003-5003335 EC contribution: €2 980 000
Duration: 36 months Type: Specific Targeted Research Project
Starting date: 1 February 2004
Project Coordinator
Prof. Laurent Gutmann
INSERM EMIR0004/Université Paris VI
Laboratoire de Recherche Moléculaire sur les Antibiotiques
15 rue de l’école de Médecine
75270 Paris, France
Tel. +33 1 42 34 68 62
Fax +33 1 423 25 68 12
E-mail: laurent.gutmann@hop.egp.ap-hop-paris.fr; gutmann@ccr.jussieu.fr:

Partners

Prof. Jean-Marie Frère
Centre d’Ingénierie des Protéines
Liège, Belgium

Dr Tanneke Den Blaauwen
Swammerdam Institute for Life Sciences
Amsterdam, Netherlands

Prof. Regine Hakenbeck
University of Kaiserslautern
Kaiserslautern, Germany

Prof. Brigitte Berger-Bächli
Institut für Medizinische Mikrobiologie/Universität Zürich
Zuich, Switzerland

Dr Juan Ayala
Centro de Biología Molecular ‘Severo Ochoa’
Madrid, Spain

Dr Dominique Mengin-Lecreulx
Université Paris XI / IBBMC, UMR 8619 CNRS
Orsay, France

Prof. Timothy Bugg
University of Warwick
Coventry, England, UK

Dr Thierry Vernet
Institut de Biologie Structurale
Grenoble, France

Prof. Patrice Nordmann
University Paris XI, UPRES 3539
Le Kremlin Bicêtre, France

Prof. Rafaël Canton
Hospital Universitario Ramon y Cajal
Madrid, Spain

Dr David Martin Livermore
Antibiotic Resistance Monitoring & Reference Laboratory
London, England, UK

Dr Marek Gniadkowski
National Institute of Public Health
Warsaw, Poland

Dr Timothy Rutland Walsh
The University of Bristol
Bristol, England, UK

Prof. Gian Maria Rossolini
Università degli Studi di Siena
Siena, Italy

Dr Jonathan Dando
Inserm Transfert SA
Paris, France
COMBINATORIAL BIOSYNTHESIS OF INDUSTRIAL GLYCOPEPTIDES: TECHNOLOGY, OPTIMIZATION AND PRODUCTION

BACKGROUND
COMBIG-TOP focused on the generation of new and more effective glycopeptide antibiotics by using combinatorial biosynthesis, and the faster development of new candidates by combining post-genomics techniques with modern molecular biotechnology. High-quality academic research tightly interconnected with industrial research and production processes by two participating small and medium-sized enterprises (SMEs) was vital.

Problem:
Due to the increasing frequency of nosocomial infections caused by multi-resistant bacterial pathogens, there is an urgent need for novel and better antibiotics that can supplement the existing armamentarium against pathogens.

AIMS
COMBIG-TOP aimed to generate more effective glycopeptides by combinatorial biosynthesis and to accelerate the development of promising glycopeptides through an improved fermentation process.

OBTAINED RESULTS
COMBIG-TOP generated novel peptide backbones and elucidated the glycopeptide synthesis focusing on the synthesis of balhimycin by Amycolatopsis balhimycina. Genes involved in glycopeptide tailoring reactions, such as glycosyl transfer, were collected from different glycopeptide producers or identified by genetic screening. Novel glycopeptides with altered backbones, novel glycosylation patterns and other structural modifications were developed. These drug candidates will be tested for their effectiveness as antibiotics. Flux analyses and two-dimensional (2D) maps were used to discover primary metabolism proteins up-regulated during glycopeptide production. Combined with a study of other limiting steps such as precursor uptake, bottlenecks in the glycopeptide production could be identified and eliminated, allowing the construction of an improved production strain, also usable for the novel glycopeptides generated by the project.

Potential applications:
New antibiotics for human health.
Project Coordinator

Prof. Dr Wolfgang Wohlleben
University of Tübingen
Institute of Microbiology
Department of Microbiology/Biotechnology
Auf der Morgenstelle 28
72076 Tübingen, Germany
Tel. +49 070712976944
Fax +49 07071295679
E-mail: wolfgang.wohlleben@biotech.uni-tuebingen.de

Partners

Prof. Lubbert Dijkhuizen
University of Groningen
Haren, Netherlands

Dr Jochen Förster
Fluxome Sciences A/S
Technical University of Denmark
Kgs. Lyngby, Denmark

Prof. Dr Mohammed Marahiel
Philipps University of Marburg
Marburg, Germany

Prof. Jens Nielsen
Technical University of Denmark
Kgs. Lyngby, Denmark

Dr Stefan Pelzer
Combinature Biopharm AG
Berlin, Germany

Prof. Anna Maria Puglia
University of Palermo
Palermo, Italy

Prof. John Robinson
University of Zurich
Zurich, Switzerland

Prof. Dr Roderich Süßmuth
Technische Universität Berlin
Berlin, Germany
DEVELOPMENT OF NEW GYRASE INHIBITORS BY COMBINATORIAL BIOSYNTHESIS

BACKGROUND
The bacterial enzyme DNA gyrase is well validated as a target for a number of antibacterial compounds. CombiGyrase researched and developed new drugs that are urgently needed. It represented an ideal platform to expand the diversity of potent gyrase inhibitors found in nature by methods of combinatorial biosynthesis. Combinatorial biosynthesis is a novel technology that uses genetic manipulation to improve the chemical properties and pharmacological activity of naturally occurring compounds. Using microorganisms which produce natural gyrase-inhibiting antibiotics, the CombiGyrase consortium successfully demonstrated that novel ‘designer’ antibiotics can be developed by combinatorial genetic methods. New gyrase-directed drugs, such as aminocoumarin and simocyclinone antibiotics, developed by these methods, may help to overcome problems due to clinical resistance, and may significantly expand the clinical role of the gyrase inhibitors as antibacterial agents.

Problem:
A constant threat to the population of the European Community is the ever-increasing problem of antibiotic resistance. Widespread use of antibiotics has led to the emergence of antibiotic-resistant strains. The increase and spread of resistance are a matter of serious public health concern worldwide. For example, vancomycin has long been considered as the solution to methicillin-resistant Staphylococcus aureus (MRSA) infections, but vancomycin-resistant strains of S. aureus have already begun to emerge. Nowadays, the risk of infection increases with a prolonged hospital stay, and so does failure of antibiotic therapy because of multidrug resistance.

AIMS
CombiGyrase aimed to develop new anti-infectives targeting gyrase and/or bacterial topoisomerase IV, evaluate the activity of these compounds as inhibitors of gyrase and of topoisomerase IV and of the resulting antibacterial activity against bacterial pathogens, and evaluate the suitability of these compounds as drug candidates.

The focus was on the development of derivatives of the following antibiotics, which are produced by different Streptomyces strains and represent highly potent inhibitors of gyrase:

- the aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A1;
- the mixed aminocoumarin/angucycline antibiotic simocyclinone D8;
- the mixed peptide/polyketide antibiotics cyclothialidine and GR122222X.

OBTAINED RESULTS
By using microorganisms that produce natural gyrase-inhibiting antibiotics, the CombiGyrase consortium successfully demonstrated that novel ‘designer’ antibiotics can be developed by combinatorial genetic methods.
CombiGyrase generated 33 new amino-coumarins using genetically optimised microorganisms. The structures of these compounds were elucidated, and the new antibiotics were tested for gyrase inhibition in vitro and in a cell-based reporter gene expression assay, and for their activity against bacterial pathogens. A high-throughput assay for the ATPase activity of gyrase B was established and validated with known inhibitors. A secondary assay for detecting the mode of action of novel anti-microbial compounds was validated for gyrase B inhibitors.

The consortium discovered the mode of action of a completely novel class of DNA gyrase inhibitors (simocyclinones). Simocyclinones share some structural similarities with aminocoumarins but also a number of differences. The partners found that these compounds target gyrase, and that simocyclinone D8 is a more potent inhibitor than novobiocin.

Potential applications:
The CombiGyrase results benefit public health by providing a road to new antibiotics, which will help to combat infectious diseases.

Project Coordinator

Prof. Dr Lutz Heide
University of Tübingen
Pharmazeutisches Institut
Auf der Morgenstelle 8
72076 Tübingen, Germany
Tel. +49 070712972460
Fax +07071295250
E-mail: heide@uni-tuebingen.de

Partners

Prof. Dr Lutz Heide
Universidad de Oviedo
Oviedo, Spain

Prof. Andreas Bechthold
Albert-Ludwigs-Universität Freiburg
Freiburg, Germany

Prof. Anthony Maxwell
John Innes Centre
Norwich, England, UK

Prof. Manlio Palumbo
University of Padova
Padua, Italy

Dr Andreas Vente
Combinature Biopharm AG
Berlin, Germany

Prof. Malcolm Page
Basilea Pharmaceutica Ltd
Basel, Switzerland
BACKGROUND
Combating bacteria with antibiotics is an endless race because bacteria acquire antibiotic resistance (AR) genes easily from unknown environmental sources. An appropriate long-term public health objective would be to elucidate the molecular mechanisms behind the observed AR spread. The CRAB project explored a mechanistic approach to combat AR.

Problem:
Although mutations are responsible for some specific cases of AR, the driving force behind the problem of multiresistance to antimicrobials is gene acquisition by human pathogens.

AIMS
The principal aim of CRAB was to explore the mechanisms and process dynamics at work in each of the dissemination modules of the chain of AR genes dissemination — integrons, transposons, conjugative plasmids and stability modules — in a concerted approach.

EXPECTED AND OBTAINED RESULTS
The results CRAB anticipates and has achieved include:

- determination of the model driving integron cassette evolution;
- description of the different ways by which the three major classes of insertion sequence (IS) acquire, stabilise and vehicle AR genes;
- quantitative evaluation of the impact of IS elements on horizontal transfer within and between chosen bacterial genera, showing that IS together with conjugative plasmid constitute a powerful combination for horizontal gene transfer;
- identification of novel stabilisation modules (toxin/antitoxin) and of their functional characterisation (partly achieved);
- development of new molecular biological tools (expected).

Potential applications:
The application of state-of-the-art functional genomics will facilitate the translation of genomic data into novel products. Several of the novel approaches such as in situ monitoring of bacterial conjugation will likely lead to further developments with commercial potential.

Project Coordinator
Dr Didier Mazel
Institut Pasteur
Département d'structure et dynamique des génomes
Unité Plasticité du Genome Bactérien
25 rue du Dr Roux
75724 Paris, France
Tel. +33 140613284
Fax +33 145688834
E-mail: mazel@pasteur.fr

Partners
Dr Michael Chandler
Centre National de la Recherche Scientifique (CNRS)
Toulouse, France

Prof. Fernando de la Cruz
Universidad de Cantabria
Santander, Spain

Dr Ferenc Olasz
Agricultural Biotechnology Center
Gödöllő, Hungary

Prof. Dr Ellen L. Zechner
Universitaet Graz
Graz, Austria

Dr Laurence Van Melderen
Université Libre de Bruxelles
Gosselies, Belgium

Dr Finbarr Hayes
University of Manchester,
Manchester, England, UK.

Dr Philippe Gabant
Delphi Genetics SA
Charleroi, Belgium
BACKGROUND

Mobile DNA elements provide a major contribution to the spread of antimicrobial resistance allowing for recruiting new resistance genes in bacterial pathogens and facilitating their horizontal spread. While much is known about individual resistance genes and mechanisms, very little is known about their molecular epidemiology. The DRESP project aimed at investigating these aspects.

Problem:
Antibiotic resistance remains a major clinical and public health problem, and mobile DNA elements provide a major contribution to the spread of antibiotic resistance.

AIMS

DRESP2 focused on the characterisation of the molecular mechanism(s) underlying mobility of genetic elements carrying antimicrobial resistance genes.

EXPECTED AND OBTAINED RESULTS

An exceptional amount of data (e.g. genomics, nomenclature) was produced and made available to the scientific community.

Key contributions in this extensive list of data include the description and application of new techniques for molecular replicon typing of plasmids encoding resistance to newer beta-lactams, and the description of antibiotics as signalling agents.

Potential applications:
- *in vitro* diagnostic medical device;
- epidemiology of drug resistances;
- prediction of drug resistance emergence to novel compounds.

Project Coordinator

Dr. Marco R. Oggioni, Prof Gianni Pozzi, Dr. Gian Maria Rossolini
LA.M.M.B. (Laboratorio di Microbiologia Molecolare e Biotecnologia) Dipartimento di Biotopia Molecolare Università degli Studi di Siena Policlinico Le Scotte (lotto 5, piano 1) 53100 Siena, Italy
Tel. +39 0577233101 (Oggioni); +39 0577233430 (Pozzi); +39 0577233326 (Rossolini)
Fax +39 0577233334
E-mail: oggioni@unisi.it; pozzi@unisi.it; rossolini@unisi.it

Partners

Dr. David J. Farrell and Dr. Ian Morrissey
GR Micro and Quotient Bioresearch Ltd London, England, UK

Dr. Stefania Stefanì and Dr. Maria Santagati
University of Catania Catania, Italy

Dr. Fernando Baquero and Dr. Juan Carlos Galan
Ramón y Cajal Hospital Madrid, Spain

Dr. Lars Sundström
Uppsala University Uppsala, Sweden

Dr. Alex van Belkum
Erasmus University Rotterdam Rotterdam, Netherlands

Dr. Alessandra Carattoli and Dr. Annalisa Pantosti
Istituto Superiore di Sanità Rome, Italy

Dr. Patrice Nordmann
University Paris XI Le-Kremlin-Bicêtre, France

Dr. Jose-Luis Martinez and Dr. Teresa M. Coque
Centro Nacional de Biotecnologia Madrid, Spain

Dr. Balázs Libisch and Dr. Miklos Fuzi
National Center for Epidemiology Budapest, Hungary

Dr. Timothy R. Walsh
Cardiff University Cardiff, Wales, UK
DEVELOPMENT AND DISSEMINATION OF A SCHOOL ANTIBIOTIC AND HYGIENE EDUCATION PACK AND WEBSITE ACROSS EUROPE

http://www.e-bug.eu

BACKGROUND

e-Bug is a school educational resource pack and website incorporating areas of hygiene and prudent antibiotic use to be developed and disseminated across Europe. The teaching pack with worksheets linking in with each country’s national curriculum will be accompanied by websites hosting games and interactive quizzes. Results will be used to further modify and improve the pack and website to better meet the local needs.

The consortium consists of 10 associated countries (304 million) covering 42% of the European population with the highest antibiotic use and those with large populations, thus obtaining education amongst a high percentage of high antibiotic user countries. In total, this initiative will reach 47% of the European population.

Problem:

In many European countries, antibiotic prescription rates are highest in children. Within schools, respiratory and gastrointestinal infections are a major cause of childhood illness with poor respiratory and hand hygiene contributing to increased spread of infection.

AIMS

The aims of the e-Bug project include:

- development of a school pack template incorporating hygiene and prudent antibiotic use for use across European states;
- development of a school education website for 9-11 and 13-16 years to improve health across the EU.
- dissemination of packs and marketing to collaborating partner countries.

EXPECTED AND OBTAINED RESULTS

The expected results include:

- a report on background information covering:
 - how education about hygiene, normal flora and prudent antibiotic use are covered in the schools of the associated partner countries;
 - Website resources for adults and school aged children
 - Public or school education campaigns in these areas and across Europe and if/how these have been evaluated
 - implementation strategies that have been used in the countries for educational resources.

- evaluation reports covering:
 - the ease of use and impact of the pack on children’s knowledge will be assessed in three associated partner countries through questionnaires and focus groups;
 - report on ease of accessibility and impact of the website.
Potential applications:
The e-Bug pack and website will reinforce an awareness of the benefits of antibiotics and will teach about prudent use and how inappropriate use can have an adverse effect on an individual’s good bugs and antibiotics resistance in the community.

Project Coordinator
Dr Cliodna A.M. McNulty
Primary Care Unit
Health Protection Agency
Microbiology Department
Gloucestershire Royal Hospital
Great Western Road
Gloucester, GL1 3NN, England, UK
E-mail: cliodna.mcnulty@hpa.org.uk

Partners

Lead Administrator
Jennifer Stubbs
Health Protection Agency
Gloucester, England, UK

Pack Developer
Dr Donna M. Lecky
Health Protection Agency
Gloucester, England, UK

Web Lead
Dr Patty Kostkova
Institute of Health Sciences
London, England, UK

Web designer
David Farrell
Institute of Health Sciences
London, England, UK

Associate Partners:

Prof. Herman Goossens
University of Antwerp
Antwerp, Belgium

Dr Jiri Benez
Bulovka University Hospital
Prague, Czech Republic

Dr Dominique L. Monnet
National Center for Antimicrobials & Infection Control (SSI)
Copenhagen, Denmark

Prof. Pierre Dellamonica
Hospital l’Archet I
Nice, France

Dr. Julius Weinberg
Institute of Health Sciences
London, England, UK

Prof. Jenny Kourea-Kermastinou
National School of Public Health
Athens, Greece

Prof. Giuseppe Cornaglia
University of Verona
Verona, Italy

Dr Pawel Grzesiowski
National Institute of Public Health
Warsaw, Poland

Dr Antonio Brito Avo
Oearis Health Centre
Lisbon, Portugal

Dr Jose Campos
Instituto de Salud Carlos III
Madrid, Spain

Collaborating Partners:

Dr Arjana Tambic
University Hospital for Infectious Diseases
Zagreb, Croatia

Prof. Pentti Huovinen
National Public Health Institute
Turku, Finland

Dr Gabor Ternak
University of Pécs, School of Medicine
Pecs, Hungary

Dr Robert Cunney
Health Protection Surveillance Centre
Dublin, Ireland

Dr Sandra Berzina
Latvian University
Riga, Latvia

Dr Rolanda Valinteliene
Institute of Hygiene
Vilnius, Lithuania

Dr Tomas Tesar
Comenius University
Bratislava, Slovakia

Dr Marko Pokorn
University Medical Centre Ljubljana
Ljubljana, Slovenia
BACKGROUND

Clostridium difficile-associated disease (CDAD) has become the most frequent nosocomial infection in many European hospitals. Central to the control of epidemics are the deployment of assays able to rapidly diagnose and monitor the presence and spread of the organism. No such tests currently exist for these new hypervirulent C. difficile strains. The EACCAD project sought to develop the urgently required rapid, diagnostic assays in close collaboration with three small and medium-sized enterprises (SMEs).

Problem:

C. difficile is resistant to various antibiotics; it capitalises on the ensuing disruption of the normal intestinal flora to colonisation and causes disease. The effects of CDAD are devastating, both in terms of morbidity/mortality and the high costs of disease management.

AIMS

The main aim of EACCAD was the recognition of suitable targets and development of a commercial rapid test that would distinguish variant hypervirulent and antibiotic resistant strains from ordinary C. difficile strains.

EXPECTED AND OBTAINED RESULTS

1. Recognition of targets for new diagnostic tests by characterisation of hypervirulent and drug-resistant C. difficile strains. The targets are based on toxins, toxin coding regions, or other unique genes of C. difficile.
2. Availability of molecular tests and rapid membrane immunoassays for detection of the target in patient material and in bacterial isolates.
3. Validation of new developed tests for clinical diagnostics and strain characterisation.

Potential applications:

European guidelines will be formulated to diagnose CDAD and to combat outbreaks. The introduction of these tests and European guidelines increase the awareness of CDAD as an important nosocomial infection and will be of help to prevent the development of large outbreaks by new hypervirulent variants.

Project Coordinator

Dr. Ed J. Kuijper
Leiden University Medical Center
Department of Medical Microbiology
P.O. Box 9600
2300 RC Leiden, Netherlands
Tel. + 31 715263574
Fax + 31 715248148
E-mail: ejkuijper@gmail.com

Partners

Dr Maja Rupnik
University of Maribor
Maribor, Slovenia
Prof. Nigel Minton
University of Nottingham
Nottingham, England, UK
Dr Paola Mastrantonio
Istituto Superiore di Sanità (ISS)
Rome, Italy
Prof. Cristoph von Eichel-Streiber
tgcBiomics GmbH
Mainz, Germany
Dr Thierry Leclipteux
Coris BioConcept
Gembloux, Belgium
Dr Guus Simons
Pathofinder BV
Maastricht, Netherlands

Project number: LSHM-CT-2006-037870 ■ EC contribution: €1 771 000 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 December 2006
BACKGROUND
A major factor affecting the emergence and survival of resistant strains is the biological cost of resistance. The EAR consortium aimed to identify antibiotic targets and antibiotics for which the resistance mechanisms have the most negative effects on bacterial fitness. The partners experimentally examined and defined in several medically important species how fitness, virulence and transmission are affected by different types of antibiotic resistance.

Problem:
Antibiotic resistance represents a major public health concern and economic problem.

AIMS
The aims of the EAR project include:
- experimentally determining how different types of antibiotic resistances affect fitness (growth and survival within and outside hosts) of several pathogenic bacterial species;
- determining if the fitness costs of resistance can be reduced by mutation and/or environmental conditions;
- developing animal experimental models to study the impact of resistance on transmission rates;

EXPECTED AND OBTAINED RESULTS
Firstly, the results will provide the experimental knowledge required to model and perform risk assessment for the development and spread of resistance to any given antibiotic. Secondly, the achievements accomplished here will form the knowledge base required to formulate and interpret intervention strategies that seek to reduce the rate of resistance development and achieve a reversal of the rising tide of resistance in society. Thirdly, the methodology and approaches will make it possible to identify particular attributes in high-risk resistant bacteria.

Potential applications:
The deliverables of EAR will aid in the development of guidelines for the clinical use and regulation of antibiotics, which may help free resources for other important health issues of EU citizens.

Project Coordinator
Prof. Dan I. Andersson
Uppsala University
Department of Medical Biochemistry and Microbiology
Box 582, BMC
751 23 Uppsala, Sweden
Tel. +46 184714175
Fax +46 18509876
E-mail: Dan.Andersson@imbim.uu.se

Partners
Dr Niels Frimodt-Møller
The National Centre for Surveillance and Control of Infectious Diseases
Copenhagen, Denmark

Prof. Diarmaid Hughes
Uppsala University
Uppsala, Sweden

Dr Fernando Baquero
Ramón y Cajal University Hospital (IMSALUD)
Madrid, Spain

Prof. Stephen H. Gillespie
University College London
London, England, UK

Dr Jose Luis Martinez
Centro Nacional de Biotecnología
Madrid, Spain

Prof. Erik C. Böttger
University of Zurich
Zurich, Switzerland

Prof. Patrice Courvalin
Institut Pasteur
Paris, France

Dr Tore Duvold
LEO Pharma
Ballerup, Denmark
BACKGROUND
The European Antimicrobial Resistance Surveillance System (EARSS), is an international network of national surveillance systems that collects comparable and validated antimicrobial susceptibility data for public health purposes. The project performs ongoing surveillance of antimicrobial susceptibility in *Streptococcus pneumoniae*, *Staphylococcus aureus*, *Escherichia coli*, and *Enterococcus faecalis/faecium* causing invasive infections, and monitors variations of antimicrobial resistance (AMR) in time and from place to place.

Problem:
AMR is an emerging public health problem with local, national, and international dimensions as described in ‘the Copenhagen Recommendations’. Antimicrobial resistance is clearly an emerging problem. However, the precise impact of this problem is less clear to the European and scientific community. Before being able to quantify the impact on public health it is necessary to have more comparable surveillance data available. One of the recommendations made at the EU Conference ‘The Microbial Threat’ in 1998 was that a European surveillance system of antimicrobial resistance should be set up, therefore EARSS has been established.

AIMS
EARSS aimed to obtain comparable and reliable AMR data of main indicator pathogens in Europe so as to monitor AMR in time and from place to place. It also aimed to assess risk factors for AMR and to enable policymakers and healthcare workers to monitor the impact of their interventions.

OBTAINED RESULTS
For pathogens (*Streptococcus pneumoniae*, *Staphylococcus aureus*, *Escherichia coli*, and *Enterococcus faecalis/faecium*) causing invasive infections, resistance levels are available for important groups of antimicrobials from 27 European countries. In the EARSS annual report 2001, results are described in detail for all four pathogens collected in 2001. Aggregated information is directly available to healthcare workers, policymakers, and a wider public, at www.earss.rivm.nl.

Potential applications:
Policies to combat resistance should be specifically tailored to country and hospital level. The results, as presented in the EARSS annual report 2001, emphasise the need to implement the Council Recommendations on the Prudent Use of Antibiotics in Human Medicine. As laid down in the Council Recommendations, it has recently been decided that multidisciplinary organisations, called Intersectorial Coordinating Mechanisms (ICMs), will be established at the national level. The ICMs will be responsible for information exchange and cooperation between the parties involved at the national level.

Project Coordinator
Dr Edine W. Tiemersma
National Institute for Public Health and the Environment
P.O. Box 1
3720 BA Bilthoven, Netherlands
Tel. +31 30 27 43 096 (M, T, Th, F)
Fax +31 30 27 44 409
Project leader
Dr Hajo Grundmann
National Institute for Public Health and the Environment
P.O. Box 1
3720 BA Bilthoven, Netherlands
Tel. +31 30 27 44 239
Fax +31 30 27 44 409

Partners
Overview of EARSS National Representatives by country:

<table>
<thead>
<tr>
<th>Country (Code)</th>
<th>National Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria (AT)</td>
<td>H. Mittermayer, W. Koller</td>
</tr>
<tr>
<td>Belgium (BE)</td>
<td>H. Goossens, E. Hendrickx</td>
</tr>
<tr>
<td>Bulgaria (BG)</td>
<td>B. Markova</td>
</tr>
<tr>
<td>Croatia (HR)</td>
<td>S. Kalenic, A. Tambic, A. Andrasevic</td>
</tr>
<tr>
<td>Cyprus (CY)</td>
<td>D. Bagatzouni</td>
</tr>
<tr>
<td>Czech Rep. (CZ)</td>
<td>P. Urbaskova</td>
</tr>
<tr>
<td>Denmark (DK)</td>
<td>D. Monnet, R. Skov</td>
</tr>
<tr>
<td>Estonia (EE)</td>
<td>P. Naaber</td>
</tr>
<tr>
<td>Finland (FI)</td>
<td>O. Lyytikäinen, A. Nissinen</td>
</tr>
<tr>
<td>France (FR)</td>
<td>B. Coignard, V. Jarlier</td>
</tr>
<tr>
<td>Germany (DE)</td>
<td>W. Witte, K. Heckenbach</td>
</tr>
<tr>
<td>Greece (GR)</td>
<td>A. Tsakris, A. Vatopoulus</td>
</tr>
<tr>
<td>Hungary (HU)</td>
<td>M. Füzi</td>
</tr>
<tr>
<td>Ireland (IE)</td>
<td>D. Igoe, O. Murphy</td>
</tr>
<tr>
<td>Iceland (IS)</td>
<td>K. Kristinsson</td>
</tr>
<tr>
<td>Israel (IL)</td>
<td>R. Raz</td>
</tr>
<tr>
<td>Italy (IT)</td>
<td>A. Pantusti, P. D’Ancona</td>
</tr>
<tr>
<td>Latvia (LV)</td>
<td>A. Balode</td>
</tr>
<tr>
<td>Lithuania (LT)</td>
<td>J. Miciuleviciene</td>
</tr>
<tr>
<td>Luxembourg (LU)</td>
<td>R. Hemmer</td>
</tr>
<tr>
<td>Malta (MT)</td>
<td>M. Borg</td>
</tr>
<tr>
<td>Netherlands (NL)</td>
<td>E. Tiemersma, A. de Neeling</td>
</tr>
<tr>
<td>Norway (NO)</td>
<td>A. Hoiby, G. Simonsen</td>
</tr>
<tr>
<td>Poland (PL)</td>
<td>W. Hryniewicz</td>
</tr>
<tr>
<td>Portugal (PT)</td>
<td>M. Caniça</td>
</tr>
<tr>
<td>Romania (RO)</td>
<td>I. Codita</td>
</tr>
<tr>
<td>Slovakia (SK)</td>
<td>L. Langsadl</td>
</tr>
<tr>
<td>Slovenia (SI)</td>
<td>M. Mueller-Premru, J. Kolman</td>
</tr>
<tr>
<td>Spain (ES)</td>
<td>F. Baquero, J. Campos</td>
</tr>
<tr>
<td>Sweden (SE)</td>
<td>B. Liljequist</td>
</tr>
<tr>
<td>Turkey (TR)</td>
<td>D. Gür</td>
</tr>
<tr>
<td>United Kingdom (UK)</td>
<td>A. Johnson, R. Hill</td>
</tr>
<tr>
<td>(England & Wales)</td>
<td>H. Hughes</td>
</tr>
<tr>
<td>(Northern Ireland)</td>
<td>A. Eastaway</td>
</tr>
<tr>
<td>(Scotland)</td>
<td></td>
</tr>
</tbody>
</table>
BACKGROUND
ERAPharm aimed to improve existing knowledge and methods for evaluating potential risks posed by human and veterinary pharmaceuticals to the environment. The consortium addressed the different aspects of environmental risk assessment (ERA) of pharmaceuticals, including exposure modelling.

Problem:
The widespread detection of pharmaceuticals in surface waters, soils and groundwater worldwide has raised major concerns about the potential impact of these bioactive substances on the environment.

AIMS
ERAPharm aimed to advance existing knowledge and procedures for the environmental risk assessment of human and veterinary pharmaceuticals.

OBTAINED RESULTS
- Analytical methods were developed and adapted to determine selected pharmaceuticals in environmental matrices.
- Three new scenarios were identified as being insufficiently covered in the existing framework for the ERA of veterinary pharmaceuticals, despite being relevant for veterinary pharmaceuticals.
- The effects of a set of human and veterinary pharmaceuticals were studied: (1) in in vitro and low complexity bioassays, and (2) on aquatic and terrestrial organisms, at single species, population and community level using laboratory, micro- and meso-cosm and field studies.

Potential applications:
ERAPharm is expected to contribute to the establishment of more targeted and more standardised environmental risk assessment procedures for pharmaceuticals.

Project Coordinator
Dr Thomas Knacker
ECT Oekotoxikologie GmbH
Böttgerstrasse 2-14
65439 Flörsheim/M., Germany
Tel. +49 6145956411
Fax +49 6145956499
E-mail: th-knacker@ect.de

Partners
Dr Jason R. Snape
AstraZeneca UK Ltd
Brixham Environmental Laboratory
Brixham, England, UK

Prof. John Sumpter
Brunel University
Uxbridge, England, UK

Dr Thomas Ternes
Bundesanstalt für Gewässerkunde
Koblenz, Germany

Dr Jeanne Garric
Centre National du Machinisme Agricole du Genie Rural des Eaux et des Forêts (Cemagref)
Lyon, France

Project number: SSPI-CT-2003-511135 ■ EC contribution: €2 797 198 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 October 2004
Dr Alistair Boxall
University of York
York, England, UK

Prof. Bent-Halling-Sørensen
Copenhagen University
Copenhagen, Denmark

Dr Kathrin Fenner
Swiss Federal Institute of Aquatic Science and Technology (Eawag)
Dübendorf, Switzerland

Dr Christian Zipper
Geotechnisches Institut AG
Bern, Switzerland

Dr Heike Schmitt
Utrecht University
Utrecht, Netherlands

Dr José Tarazona
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Madrid, Spain

Dr John Jensen
Aarhus Universitet
Aarhus, Denmark

Dr Bettina Rechenberg
Umweltbundesamt
Dessau, Germany

Prof. Mark Servos
University of Waterloo
Waterloo, Ontario, Canada
EUROPEAN SURVEILLANCE OF ANTIMICROBIAL CONSUMPTION

BACKGROUND
In 2001, the European Commission funded the ESAC project which aimed to collect comparable and reliable data on antibiotic use in Europe in ambulatory and hospital care from publicly available sources, and assess the time trends in human exposure to antibiotics. In the second phase of the project (2004/07), the ESAC partners consolidated the data. In 2006, 34 countries including the 27 EU Member States, 2 Candidate Countries and 5 other nations participated in ESAC.

ESAC data have been used to explain the variation of antibiotic resistance and to assess the impact of intervention campaigns to reduce antibiotic prescribing.

Problem:
Antibiotic resistance is a major European and global public health problem, and international efforts are needed to counteract the emergence of resistance. There is a wealth of information on the prevalence of resistance in human pathogens, and these data show that there are substantial geographic differences in the proportion of resistance to various classes of antibiotics in Europe.

AIMS
The overall aim of ESAC was to consolidate the continuous collection of comprehensive antimicrobial consumption data, from ambulatory and hospital care, from the 27 Member States, 3 EEA/EFTA and 3 candidate countries (Croatia, Former Yugoslav Republic of Macedonia and Turkey).

EXPECTED AND OBTAINED RESULTS
The results anticipated by ESAC include:
- regional maps of antimicrobial use in Europe;
- hospital and individual patient consumption data linked with DRG (Disease Related Groups);
- expansion of health indicators of antimicrobial use;
- assessment of the effects of socioeconomic determinants on antimicrobial consumption of European countries.

Potential applications:
More and more countries have implemented or will implement actions to control antimicrobial resistance through the rational use of antibiotics. Their impact will be monitored based on Defined Daily Doses per 1000 inhabitants per day (DID) and other indicators of antibiotic use. The different sub-projects on ambulatory care, hospital care, nursing homes and socioeconomics will substantially deepen our interpretation of variation in antibiotic resistance.

Project Coordinator
Prof. Herman Goossens
University of Antwerp – Campus Drie Eiken
Vaccine and Infectious Diseases Institute
Medical microbiology
Universiteitsplein 1
2610 Antwerp, Belgium
herman.goossens@uza.be

- Project number: 2003211
- EC contribution: € 880606.00
- Duration: 36 months
- Type: Surveillance Project
- Starting date: 1 December 2004
Partners

Dr. Helmut Mittermayer
Krankenhaus der Elisabethinen Linz
Linz, Austria

MD. Erik Hendrickx
Scientific Institute of Public Health
Brussels, Belgium

Dr. Boyka Markova
University Hospital ‘Alexandrovska’
Sofia, Bulgaria

Dr. Arjana Andrasevic
University Hospital for Infectious Diseases
Zagreb, Croatia

Dr. Antonis Kontemeniotis
Pharmaceutical Services of the Ministry of Health of Cyprus
Nicosia, Cyprus

Dr. Jiri Vlcek
Charles University of Prague
Hradec Kralove, Czech Republic

Dr. Niels Frimodt-Møller
Statens Serum Institut
Copenhagen S, Denmark

Dr. Ly Rootsian
State Agency of Medicines Bureau of Drug Statistics
Tartu, Estonia

Dr. Pentti Huovinen
National Public Health Institute
Turku, Finland

Dr. Milena Petrovska
Microbiology and Parasitology Medical Faculty
Skopje, FYROM

Dr. Philippe Cavalié
Direction de l’évaluation de la publicité, des produits cosmétiques et biocides DEPPCB
Saint-Denis, France

Dr. Winfried V Kern
University Hospital – Abteilung Medizin 2
Freiburg, Germany

Prof. Helen Giamarellou
Sismanoglio Hospital
Marousi, Attica, Greece

Dr. Gabor Ternak
County Hospital
Pécs, Hungary

Prof. Karl G. Kristinsson
Landspitali – University Hospital
Reykjavik, Iceland

Dr. Robert Cunney
Sta National Disease Surveillance Centre
Dublin 1, Ireland

Dr. Raul Raz
Ha’Emek Medical Center
Afula, Israel

Dr. Pietro Folino
Agenzia Italiana del Farmaco
Rome, Italy

Dr. Uga Dumpis
University of Latvia
Riga, Latvia

Dr. Rolanda Valinteliene
Institute of Hygiene
Vilnius, Lithuania

Dr. Marcel Bruch
Direction de la Santé (Ministère de la Santé)
Luxembourg, Luxembourg

MD. Michael Borg
Infection Control Unit, Mater Dei Hospital
Msida, Malta

Dr. Hege Salvesen Blix
Norwegian Institute of Public Health
Oslo, Norway

Dr. Waleria Hryniewicz
National Institute of Public Health
Warsaw, Poland

Dr. Inês Teixeira
Instituto Nacional da Farmacia e do Medicamento
Lisbon, Portugal

Dr. Băicuș Anda
National Institute of Research Development for Microbiology and Immunology
Bucharest, Romania

Dr. Svetlana Ratchina
Smolensk State Medical Academy
Smolensk, Russia

Dr. Viliam Foltan
Comenius University
Bratislava, Slovakia

Dr. Milan Cizman
University Medical Centre Ljubljana, Department of Infectious Diseases, Japljeva 2, SI-1525
Ljubljana, Slovenia

Dr. José Campos
Instituto Carlos III Ministry of Health
Mazadahonda-Madrid, Spain

Dr. Gunilla Skoog
The Swedish Institute for Infectious Disease Control
Solna, Sweden

Prof. Giorgio Zanetti
Service de Médicine Préventive Hospitalière
Lausanne, Switzerland

Dr. Margreet Filius
Erasmus University Medical Centre Rotterdam
Rotterdam, Netherlands

Dr. Serhat Unal
Hacettepe University
Ankara, Turkey

Dr. Peter Davey
Ninewells Hospital
Dundee, Scotland - UK
BACKGROUND
Sexually transmitted infections (STIs) in Europe are a major public health threat. Their increasing incidence; adverse impact on individual and public health; substantial economic costs; and emerging antimicrobial resistance have increased the need for pan-European approaches to their control. The ESSTI (European Surveillance of Sexually Transmitted Infections) Network aims to develop and coordinate epidemiological and laboratory surveillance of STIs in the European region in order to better inform STI prevention, care and control.

Problem:
The increasing incidence of gonococcal infections is of concern due to the acquisition of resistance to antimicrobials by the causative bacterium Neisseria gonorrhoeae. Antimicrobial resistance has implications for the treatment of gonorrhoea and therefore surveillance has a key role in informing about national treatment guidelines.

AIMS
Specific objectives include:
- operation and development of the ESSTI network with EU Member States, EFTA/EEA, Turkey;
- extension of ESSTI_ALERT, the European early warning system for unexpected and adverse STI transmission events;
- implementation of a European Gonococcal Antimicrobial Susceptibility Surveillance Project (Euro_GASP);
- delivery of training programmes on STI surveillance, lab diagnostics and STI clinical management to network participants;
- use of ESSTI website for information dissemination.

EXPECTED RESULTS
1. Estimates of resistance to antimicrobial agents used for the therapy of gonorrhoea across Europe.
2. Comparability of methods for determining susceptibility to antimicrobial agents for Neisseria gonorrhoeae.
3. Establishment of a panel of control strains for use in laboratories across Europe.

Potential applications:
Collaboration between the laboratories in this network should establish a European Gonococcal Surveillance Programme (Euro_GASP) that will monitor resistance to therapeutic agents across Europe and inform individual patient management and the production of therapeutic guidelines.

Project Coordinator
Prof. Cathy Ison
Health Protection Agency
61 Colindale Avenue
London, NW9 5EQ, England, UK
E-mail: Catherine.Ison@hpa.org.uk

Partners
Dr. Angelika Stary
Outpatients’ Centre for Diagnosis of Infectious Venero-Dermatological Diseases
Vienna, Austria

Dr. Reinhold Strauss
Federal Ministry for Health and Women
Vienna, Austria
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. André Sasse</td>
<td>Scientific Institute of Public Health, Brussels, Belgium</td>
</tr>
<tr>
<td>Dr. Tania Crucitti</td>
<td>Institute of Tropical Medicine, Antwerp, Belgium</td>
</tr>
<tr>
<td>Dr Chrystalla Hadjianastassiou</td>
<td>Medical and Public Health Services, Ministry of Health, Nicosia, Cyprus</td>
</tr>
<tr>
<td>Dr. Susan Cowan and Steen Hoffman</td>
<td>Statens Serum Institut, Copenhagen S, Denmark</td>
</tr>
<tr>
<td>Dr. Anneli Uusküla</td>
<td>Tartu University Clinics, Tartu, Estonia</td>
</tr>
<tr>
<td>Dr. Rutta Voiko</td>
<td>West Tallinn Central Hospital, Tallinn, Estonia</td>
</tr>
<tr>
<td>Dr. Eija Hiltunen-Back</td>
<td>National Public Health Institute, Helsinki, Finland</td>
</tr>
<tr>
<td>Dr. Véronique Goulet</td>
<td>Institut de Veille Sanitaire, Saint-Maurice, France</td>
</tr>
<tr>
<td>Dr. Patrice Sednaoui</td>
<td>Institut Alfred Fournier, Paris, France</td>
</tr>
<tr>
<td>Dr. Osamah Hamouda</td>
<td>Robert Koch Institut, Berlin, Germany</td>
</tr>
<tr>
<td>Prof. Peter Kohl</td>
<td>Vivantes Klinikum Neukölln, Berlin, Germany</td>
</tr>
<tr>
<td>Dr. Vasileia Konte</td>
<td>Hellenic Centre for Infectious Disease Control, Athens, Greece</td>
</tr>
<tr>
<td>Dr. Eva Tzelepi</td>
<td>Hellenic Pasteur Institute, Athens, Greece</td>
</tr>
<tr>
<td>Dr. Guðrun Sigmundsdottir</td>
<td>Directorate of Health, Selfjarnarnes, Iceland</td>
</tr>
<tr>
<td>Dr Aidan O’Hora</td>
<td>Health Protection Surveillance Centre, Dublin 1, Ireland</td>
</tr>
<tr>
<td>Dr. Helen Barry</td>
<td>St James Hospital, Dublin 8, Ireland</td>
</tr>
<tr>
<td>Dr. Paola Stefanelli and Dr. Barbara Suligoi</td>
<td>Istituto Superiore di Sanità, Rome, Italy</td>
</tr>
<tr>
<td>Dr. Judite Pirsko and Dr. Elvira Lavrinovica</td>
<td>State Centre of Sexually Transmitted and Skin Diseases, Riga, Latvia</td>
</tr>
<tr>
<td>Dr. Christopher Barbara</td>
<td>St Luke’s Hospital, G’Mangia, Malta</td>
</tr>
<tr>
<td>Dr. Jackie Maistre Melillo</td>
<td>Department of Public Health, Msida, Malta</td>
</tr>
<tr>
<td>Dr. Marianne van der Sande</td>
<td>National Institute of Public Health & the Environment, Bilthoven, Netherlands</td>
</tr>
<tr>
<td>Dr. Ineke Linde</td>
<td>GGD Amsterdam, Amsterdam, Netherlands</td>
</tr>
<tr>
<td>Dr. Hilde Klevstad and Dr. Vegard Skogen</td>
<td>Norwegian Institute of Public Health, Oslo, Norway</td>
</tr>
<tr>
<td>Dr. Slawomir Majewski and Dr. Magdalena Malejczyk</td>
<td>Warsaw School of Medicine, Warsaw, Poland</td>
</tr>
<tr>
<td>Dr. Maria José Borrego</td>
<td>Instituto Nacional de Saude Dr Ricardo Jorge, Lisbon, Portugal</td>
</tr>
<tr>
<td>Dr. Jan Mikas</td>
<td>National Public Health Agency of the Slovak Republic, Bratislava, Slovakia</td>
</tr>
<tr>
<td>Dr. Alenka Andlovic</td>
<td>University of Ljubljana, Ljubljana, Slovenia</td>
</tr>
<tr>
<td>Dr. Irena Klavs</td>
<td>Institute of Public Health of the Republic of Slovenia, Ljubljana, Slovenia</td>
</tr>
<tr>
<td>Dr. Mercedes Diez and Dr. Julio Vazquez</td>
<td>Instituto de Salud Carlos III, Madrid, Spain</td>
</tr>
<tr>
<td>Dr. Inga Velicko and Dr. Anders Blaxhult</td>
<td>Swedish Institute for Infectious Disease Control, Solna, Sweden</td>
</tr>
<tr>
<td>Dr. Hans Fredlund</td>
<td>Swedish Reference Laboratory for Pathogenic Neisseria, Orebro, Sweden</td>
</tr>
<tr>
<td>Dr. Peyman Altan</td>
<td>General Directorate of Primary Care Services, Ministry of Health, Sihhiye-Ankara, Turkey</td>
</tr>
<tr>
<td>Dr. Gwenda Hughes</td>
<td>Health Protection Agency, Centre for Infections, London, England, UK</td>
</tr>
<tr>
<td>Dr. Lesley Wallace</td>
<td>Health Protection Scotland, Glasgow, Scotland, UK</td>
</tr>
<tr>
<td>Dr. Hugh Young</td>
<td>Scottish Neisseria gonorrhoeae Reference Laboratory, Edinburgh, Scotland, UK</td>
</tr>
</tbody>
</table>
ENABLING TECHNIQUES FOR THE DEVELOPMENT OF A NOVEL CLASS OF PROTEIN ANTIBIOTICS

BACKGROUND
Antibiotics’ resistance to pathogens is a major threat to public health and safety, increasing the risk of mortality, especially in hospital settings. This issue also includes preparedness to deal with bio-terrorism. Currently, the antibiotics market is dominated by small molecule classes, which all face increased drug resistance and require product differentiation. While this remains a primary focus in antibiotics development, new concepts for entirely new classes of substances for the treatment of bacteria, fungi, viruses and protozoa are urgently needed.

AIMS
ET-PA aimed to develop an open, generic platform to enable the development of a new class of protein-antibiotics. The key technology (REPPs) is based on a principle that is proprietary to one of the participating small and medium-sized enterprises (SMEs), and consists of rationally modified, single-chain class II restriction enzymes (REs) fused to cell penetration peptide (PP) sequences that selectively allow microbial cell penetration. The consortium sought to fuse an appropriate cell PP sequence to an engineered RE that includes both subunits in a single chain, so as to produce a ‘REPP’ construct capable of microbial cell penetration and autonomous folding to an active unit within the cell.

EXPECTED AND OBTAINED RESULTS
The major milestone was to provide a clear proof of concept for the introduction of the class of REPP molecules as antibiotics. Lead substances for further preclinical development were expected. The ET-PA consortium has defined that for a successful targeting of prokaryotic pathogens by REPP antibiotics, these molecules must clearly accomplish four tasks cross the outer cell wall barriers of bacteria and bind to the membrane surface;

1. enter into the cytoplasm by translocating or otherwise crossing the cytoplasmic membrane;
2. fold the enzymatic portion to the active form, a process whose rate limiting step in natural REs is mainly defined by the rate of the dimerisation;
3. specifically bind to and cut DNA damaging the bacterial genome.

Project Coordinator
Christian Kuehne
Adriacell Srl Trieste
Area Science Park
Sede Laboratorio Basovizza, S.S. 14, Km 163.5
34012 Trieste, Italy
Tel. +39 0403757770
Fax +39 0403757773
E-mail: office@adriacell.com

Partners
Dr Ales Strancar
BIA Separations d.o.o.
Ljubljana, Slovenia

Prof. Dr Peter Laggner
Hecus X-Ray Systems GmbH
Graz, Austria

Prof. Renato Gennaro
University of Trieste
Trieste, Italy

Prof. Dr Hans-Georg Sahl
University of Bonn
Bonn, Germany
Invasive Bacterial Infections
Surveillance in European Union

BACKGROUND
Standardisation of epidemiological and laboratory methodologies across the EU allows valid overviews and comparisons to be drawn on the epidemiology of invasive Haemophilus influenzae (H. influenzae) and Neisseria meningitidis (N. meningitidis) diseases. These two diseases are both rare, and the EU-IBIS project allowed the pooling of data to increase the power of an epidemiological analysis.

Problem:
The bacteria N. meningitidis and H. influenzae are an important cause of invasive disease, including meningitis, septicaemia and epiglottitis, across Europe. These bacterial infections contribute to morbidity and mortality, particularly in young children, and represent an important public health problem.

AIMS
The objectives of the project included:

- improving the epidemiological information on invasive meningococcal and Haemophilus influenzae disease within the EU;
- improving the laboratory capacity to accurately characterise the isolates of H. influenzae and N. meningitidis;
- evaluating the impact of vaccination with conjugate vaccines on the epidemiology of H. influenzae and N. meningitidis;
- comparing the impact of vaccination with conjugate vaccines produced by different manufacturers and according to different schedules;
- focusing on a wider collaboration with non-EU countries and Candidate Countries.

EXPECTED AND OBTAINED RESULTS
The EU-IBIS network contributed to strengthening disease-specific surveillance in the EU. Through the use of standard EU case definitions and an agreed minimum dataset, the comparability of surveillance data allows valid comparisons to be drawn across the EU. Improved laboratory capacity for diagnosis and characterisation of circulating organisms will also contribute to making valid comparisons between countries possible, and will enable accurate reporting on emerging strains, or rapid reporting. A number of countries with unreconciled datasets will be encouraged to work towards full reconciliation of their clinical and laboratory data. This will improve the data contributed to EU-IBIS, but will also have beneficial value to the individual countries.

Improvements in surveillance data have already occurred within EU-IBIS participant countries, and will continue to be seen, especially in Accession Countries. The standardised epidemiological and microbiological data gathered by EU-IBIS give the ability to detect whether changes in disease epidemiology are driven by environmental factors or vaccine impact.

Equally, the network enables a concerted response to such changes with appropriate surveillance strategies or public health

Project number: 2003202 ■ EC contribution: € 665,877 ■ Duration: 36 months ■ Type: Health project ■ Starting date: 2 October 2003
interventions. This was demonstrated by the establishment of two short-term N. meningitidis rapid reporting systems over the lifetime of the project; a sentinel W135 reporting system following the Hajj 2000 outbreak, and a B:2a/B:2b rapid reporting system to identify instances of capsule switching following the introduction of meningococcal C vaccine.

Attainment of standardised, quality surveillance data for H. influenzae and N. meningitidis throughout the EU provides a platform for other studies of meningococcal disease and H. influenzae. This has already been seen in the EU-MenNet-EU-IBIS collaboration.

Potential applications:
This project will allow the more rational development of vaccine policy in Europe and ensure that this policy is evidence-based. Rapid dissemination of changes in the epidemiology of an infection which may have public health significance is possible through the established EU-IBIS network. The standards set by EU-IBIS for epidemiological surveillance and for methods used in reference laboratories provide models of good practice from which EU Member States, Candidate Countries and non-EU countries can learn. Early dissemination of advances in therapy and in public health control measures can be facilitated through this network, which can lead to harmonisation of guidance on meningococcal disease.

Project Coordinator
Manny Chandra and Mary Ramsay
HPC Centre for Infections
Immunisation Department
61 Colindale Avenue
London, England, UK
Tel: +44.208327.7085
Fax: +44.208200.7868
E-mail: Mary.ramsay@hpa.org.uk
E-mail: eu-ibis@hpa.org.uk

Partners
Please note that the complete Partners names and addresses are available on the project website (www.euibis.org).

Dr Reinhild Strauss
Federal Ministry for Health,
Family and Youth, Austria

Dr Sigrid Heuberger
Austrian Agency for Food and Health Safety, Austria

Dr Germaine Hanquet
Louis Pasteur, Belgium

Mrs Françoise Carion
Scientific Institute of Public Health, Belgium

Dr Pavla Krizova and Dr Vera Lebedova
National Institute of Public Health, Czech Republic

Dr Kåre Molbak, Dr Jens Jørgen Christensen, Dr Margit S. Kaltoft
Statens Serum Institut, Denmark

Dr Mary Slack and Dr Mary Ramsay
Health Protection Agency, England, UK

Prof. Andrew Fox
Health Protection Agency North West Laboratory, England, UK

Dr Kuulo Kutsar and Dr Unna Jöks
Health Protection Inspectorate, Estonia

Dr Petri Ruutu, Helena Käyhty, Maija Leinonen
National Public Health Institute, Finland

Dr Isabelle Parent du Châtelet and Dr Agnès Lepoutre
Institut de Veille Sanitaire, France

Dr Muhamed-Khier Taha
Institut Pasteur, France

Dr Walter Hass
Dep Infektions Epidemiologie, Germany

Prof. Dr Matthias Frosch and Dr Ulrich Vogel
Institute for Hygiene and Microbiology, Germany

Prof. Jenny Kourea-Kremastinou and Dr Georgina Tzanakaki
National School of Public Health, Greece

Dr Miklós Füzi
Johan Bela National Centre for Epidemiology, Hungary

Dr Thorolfur Gudnason
Centre for Infectious Disease Control, Iceland

Dr Hjordis Hardottoir
Institute of Laboratory Medicine, Iceland

Dr Suzanne Cotter
Health Protection Surveillance Centre, Ireland
Prof. Mary Cafferkey
Children's University Hospital, Ireland

Dr Stefania Salmaso, Dr Paola Mastrantonio, Dr Marta Ciofi degli Atti, Dr Marina Cerquetti
Istituto Superiore di Sanità, Italy

Dr Irina Lucenko
Public Health Agency, Latvia

Dr Grazina Rimseviene
Centre for Communicable Disease Prevention and Control, Lithuania

Dr Pierrette Huberty-Krau
Inspection Sanitaire, Luxembourg

Dr François Schneider
Laboratoire National de Santé, Luxembourg

Dr Jackie Maistre Melillo
Department of Public Health, Malta

Dr Hester de Melker and Sabine de Greeff
National Institute of Public Health and the Environment, Netherlands

Dr Øistein Løvoll, Prof. Dominique A. Caugant, Dr Arne E. Hoiby
Norwegian Institute of Public Health, Norway

Prof. Andrzej Zielinski
National Institute of Hygiene, Poland

Prof. Waleria Hryniewicz and Dr Anna Skoczynska
National Institute of Public Health, Poland

Dr Laurinda Queirós
Centro Regional de Saúde Pública de Norte, Portugal

Dr Maria João Simões and Dr Paula Lavado
Instituto Nacional de Saúde Dr Ricardo Jorge, Portugal

Ms Barbara Denham
Stobhill Hospital, Scotland, UK

Dr Margareta Sláčiková and Dr Alena Vaculíková
Public Health Authority of the Slovak Republic, Slovakia

Dr Alenka Kraigher and Dr Metka Paragi
Institute of Public Health Slovenia, Slovenia

Dr Rosa Cano Portero, Dr Julio Vazquez, Dr Jose Campos
Instituto de Salud Carlos III, Spain

Dr Rose-Marie Carlsson, Prof. Birgitta Henriques Normark, Margareta Löfdahl
Swedish Institute for Infectious Disease Control, Sweden

Prof. Per Olcén and Prof. Hans Fredlund
National Reference Laboratory for Pathogenic Neisseria, Sweden

Dr A. Philip Zucs and Dr Hans-Peter Zimmermann
Swiss Federal Office of Public Health, Switzerland

Dr Béatrice Ninet
Hôpitaux Universitaires de Genève, Switzerland

Dr Peter McIntyre
Children's Hospital at Westmead and University of Sydney, Australia

Prof. Lyn Gilbert
ICPMR, Westmead Hospital, Australia

Prof. Geoff Hogg
University of Melbourne, Australia

Dr Françoise Crokaert
Institut Jules Bordet, Belgium

Prof. Henri Dabernat
Centre Hospitalier Universitaire de Toulouse, France

Dr Anette Siedler
Robert Koch Institute, Germany

Prof. Dr Med Heinz-J. Schmitt and Dr Britta Gröndahl
Johannes Gutenberg-Universitat, Germany

Prof. Marie Theodoridou and Dr Anastasia Pangalis
‘Aghia Sophia’ General Children’s Hospital, Greece

Prof. Ron Dagan
Soroko University Medical Centre

Snieguole Dauksiene
National Public Health Investigation Centre, Lithuania

Dr Lodewijk Spanjaard and Dr Arie van der Ende
Academic Medical Centre, Netherlands

Dr Claire Cameron and Fiona Johnston
Health Protection Scotland, Scotland, UK

Dr Elena Nováková
Regional Public Health Authority, Slovakia
EUROPEAN COMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

BACKGROUND
EUCAST was initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the national breakpoint committees in Europe to give Europe uniform breakpoints for antimicrobial susceptibility testing. EUCAST harmonised breakpoints for all existing antimicrobials at the end of 2008. Moreover, through the cooperation between EUCAST and EMEA, several new antimicrobials have received European breakpoints through the EUCAST breakpoint process.

Problem:
There is a lack of uniform antimicrobial breakpoints in Europe, both for therapy and for antimicrobial resistance surveillance, as well as a lack of a uniform European processes for setting breakpoints for new antimicrobial agents.

AIMS
The main objective was to provide Europe with harmonised antimicrobial breakpoints for existing drugs and a pathway through which new drugs can receive uniform breakpoints in Europe. The EUCAST consortium also sought to cooperate with all expert groups and European agencies with an interest in antimicrobial breakpoints, and to set up a website for the dissemination of key materials.

OBTAINED RESULTS
1. Standard operating procedures (SOP) regulating the cooperation between EUCAST and EMEA is operative.
2. Breakpoints for several new drugs have been determined.
3. Breakpoints for existing drugs have been harmonised for aminoglycosides, glycopeptides, fluoroquinolones, linezolid, carbapenem, aztreonam, cephalosporines, macrolides, penicillins and miscellaneous drugs.
4. All cooperation (EFSA, EMEA, EARSS etc) is operative.
5. Subcommittees on antifungal drugs, interpretative rules in susceptibility testing and anaerobe bacteria are operative.
6. A European disk test for routine susceptibility testing is being developed.

Potential applications:
Europe is in need of uniform breakpoints for the categorisation of bacteria and fungi in susceptible, intermediate and resistant categories for therapy with antimicrobial drugs and for the measurement of antimicrobial resistance development.
Project Coordinator

Gunnar Kahlmeter
Chairman of EUCAST (2002 – 2008)
Clinical Microbiology
Central Hospital
351 85 Växjö, Sweden
E-mail: Gunnar.kahlmeter@ltkronoberg.se

Partners

Dr. Derek Brown
British Society for Antimicrobial Chemotherapy (BSAC),
United Kingdom

Prof. Claude-James Soussy
Comité de l’antibiogramme de la Société Française de Microbiologie (CA-SFM),
France

Dr. Arne Rodloff
Deutsche Industrie Norm-Medizinische Mikrobiologie (DIN),
Germany

Dr. Johan W Mouton
Commissie Richtlijnen Gevoeligheidsbepalingen (CRG),
Netherlands

Dr. Inga Odenholt
Swedish Reference Group for Antibiotics (SRGA),
Sweden

Dr. Martin Steinbakk
Norwegian Working Group on Antibiotics (NWGA),
Norway
INHIBITION OF NEW TARGETS FOR FIGHTING ANTIBIOTIC RESISTANCE

BACKGROUND
Peptidoglycan (PG) biosynthesis and bacterial cell morphogenesis are related phenomena and are totally specific to bacterial cells without even remotely equivalent systems in eukaryotic cells. The enzymes and proteins involved in these processes are thus promising targets for the design of new antibiotics. Interfering with the activities of the participating enzymes or with the protein-protein interactions that take place along these metabolic pathways should perturb the bacterial cell cycle and, hopefully, supply new weapons to fight dangerous pathogenic organisms such as the methicillin-resistant *Staphylococcus aureus* (MRSA).

Problem:
The increase in antibiotic resistance is a global problem, both for nosocomial and community-acquired infections.

AIMS
The aim of the EUR-INTAFAR network is to find new targets for antibiotics and to use the knowledge amassed on the antibiotic-resistant forms of the ‘old’ targets for the design of more efficient molecules.

OBTAINED RESULTS
1. Transpeptidases (Tpases) or Penicillin-Binding-Proteins (PBPs) are the targets of β-lactam antibiotics. However, some pathogenic bacteria such as *Streptococcus pneumoniae* and the methicillin-resistant *Staphylococcus aureus* MRSA have acquired transpeptidases that are resistant to most clinically useful β-lactams. Various novel methods have been devised to test inhibitors prepared by the chemist partners. The partners have shown that lactivicin, the only known natural compound exhibiting such properties, is active against clinically isolated penicillin-resistant *S. pneumoniae* strains. Crystallographic studies performed with *S. pneumoniae* PBP 1b reveal that the inactivation reaction involves opening of both cycloserine and lactone rings of lactivicin. Thus, lactivicin derivatives will be useful in the search for antibiotics active against β-lactam resistant bacteria.

2. Screening for inhibitors of glycosyltransferase (GTase) activity yielded 30 potential inhibitors among which two were found to inhibit GTase activity of E.coli PBP 1b.

3. The steps preceding transglycosylation and transpeptidation result in an outward-oriented lipid II. They involve the synthesis of lipid II by MraY and MurG followed by translocation of the disaccharide-peptide moiety across the cytoplasmic membrane. The synthesis and translocation have been studied.

4. Only two clinically useful antibiotics are presently available which target the intracellular steps leading to the soluble PG precursors and one of them (cycloserine) might be withdrawn in the near future. All the intermediate metabolites have been prepared and a
novel class of MurD inhibitors has been identified. The structure of an enzyme inhibitor complex has been solved.

5. In *S. pneumoniae*, new enzymes participating in teichoic acid biosynthesis have been identified and the long-standing problem about why *S. pneumoniae* requires choline for growth was solved.

6. An innovative high-throughput system has been developed for screening chemical compound libraries in microspots (EU patent application submitted, February 2008).

Potential applications:
This project is of prime importance as a springboard to re-activate the important therapeutic area of antibiotic drugs. A better understanding of the physiology and biochemistry of bacterial cell morphogenesis and peptidoglycan biosynthesis will create new avenues for the design and synthesis of efficient antimicrobials. This will make new opportunities available for companies of different sizes to develop these compounds until they reach the clinical level.

Project Co-Coordinator
Prof. Jean-Marie Frère
Centre for Protein Engineering
Institut de Chimie B6a
University of Liège
Sart-Tilman
B400 Liège, Belgium
Tel 32 4 366 33 98
Fax 32 4 366 33 64
Email:jmfrere@ulg.ac.be

Partners
Dr. Tanneke Den Blaauwen
University of Amsterdam
Amsterdam, Netherlands

Dr. Didier Blanot
Université de Paris-Sud
Orsay, France

Dr Eefjan Breukink
Utrecht University
Utrecht, Netherlands

Dr. Andréa Dessen
Institut de Biologie Structurale Jean-Pierre Ebel
Grenoble, France

Dr. Waldemar Vollmer
Universität Tübingen
Tübingen, Germany

Prof Regine Hakenbeck
University of Kaiserslautern
Kaiserslautern, Germany

Dr. Michel Arthur
Université Paris VI
Paris, France

Prof. Ian Chopra
University of Leeds
Leeds, England, UK

Dr. Jean-Pierre Simorre
Institut de Biologie Structurale
Grenoble, France

Dr. André Luxen
University of Liège
Liège, Belgium

Prof. Christopher Schofield
Oxford University
Oxford, England, UK

Prof. Yves Le Merrer
Université René Descartes
Paris, France

Dr. Stanislav Grobec
University of Ljubljana
Ljubljana, Slovenia

Prof. Uros Urleb
Lek Pharmaceuticals d.d.
Ljubljana, Slovenia

Dr. Frédéric Marc
ProtNeteomix SAS
Nantes, France

Dr. Waldemar Vollmer
University of Newcastle upon Tyne
Newcastle upon Tyne, England, UK
INTEGRATED POST-GENOMIC APPROACHES FOR THE UNDERSTANDING, DETECTION AND PREVENTION OF ANTIFUNGAL DRUG RESISTANCE IN FUNGAL PATHOGENS

http://www.chuv.ch/imul/euresfun

BACKGROUND
The EURESFUN (EUropean RESistance FUNgal) network used genomics-based integrated approaches to study antifungal resistance in relevant fungal pathogens (Candida, Aspergillus). Using microarray strategies and systematic deletion/over-expression approaches, the network sought to unravel potential novel targets for antifungal drug discovery, but also to yield diagnostic tools and mutations suitable for use in resistance monitoring and surveillance.

Problem:
The frequency of fungal infections has been steadily increasing in the human population worldwide over the past decades. Several fungal pathogens cause severe fungal infections in hospitals. Among them, the most important are Candida albicans, C. glabrata and Aspergillus fumigatus. C. albicans accounts for more than 50% of all fungal infections, causing both superficial and disseminated infections, while C. glabrata infections account for 10 - 20% of the cases.

The exposure of fungal pathogens to antifungal agents has different outcomes, one of which is the development of resistance.

AIMS
The aims of EURESFUN included:

- designing new therapeutic strategies to improve the efficacy of existing antifungal therapy;
- establishing and using cell-based arrays for drug target genes for drug discovery by a small and medium-sized enterprise (SME);
- establishing data on resistance incidence and prevalence, and linking clinical data on susceptibility to known antifungals with a therapy outcome.

EXPECTED AND OBTAINED RESULTS
EURESFUN anticipated the following results:

- identification of specific mutations linked to antifungal resistance;
- identification of cellular components and isolation of their inhibitors;
- collection of strains displaying a wide range of susceptibility to known antifungals and associated with molecular epidemiology data;
- generation of novel diagnostic tools enabling genotyping, species identification and antifungal resistance monitoring.

Potential applications:
The diagnostic tools would rapidly detect mechanisms of resistance, impact on the costs associated with the treatment of fungal infections and reduce the social burden of these infections. The European industry’s competitiveness in the field of diagnostics would be reinforced.
Project Coordinator

Prof. Dominique Sanglard
Centre Hospitalier Universitaire Vaudois
Institut de Microbiologie
Rue du Bugnon 48
1011 Lausanne, Switzerland
Tel. +41 213144083
Fax +41 213144060
E-mail: Dominique.Sanglard@chuv.ch

Partners

Dr Christophe d’Enfert
Institut Pasteur
Paris, France

Prof. Karl Kuchler
Medizinische Universität Wien
Vienna, Austria

Prof. Uwe Gross
Georg-August Universitaet Goettingen
Göttingen, Germany

Dr Steffen Rupp
Fraunhofer Gesellschaft
Stuttgart, Germany

Prof. Steven Kelly
University of Wales Swansea
Swansea, Wales, UK

Dr Emilia Mellado
Istituto de Salud Carlos III
Madrid, Spain

Prof. Frank Odds
The University Court
of the University of Aberdeen
Aberdeen, Scotland, UK

Dr Johannes Regenbogen
GATC Biotech AG, R&D
Konstanz, Germany

Dr Derek Law
F2G Ltd
Manchester, England, UK
INTEGRATION OF VIRAL GENOMICS WITH CLINICAL DATA TO PREDICT RESPONSE TO ANTI-HIV TREATMENT

BACKGROUND
The EuResist project has developed a European integrated system for clinical management of antiretroviral drug resistance. The system will provide the clinicians with an online prediction of response to antiretroviral treatment in HIV patients, thus helping the clinicians choose the best drug combinations for any given HIV genetic variant.

Problem:
While combination antiretroviral therapy has made HIV infection a treatable condition, eradication of infection is not yet achievable and antiretroviral therapy needs to be administered as a prolonged, possibly lifelong treatment. Long-term toxicity, difficulty in adhering to complex regimens, possible pharmacokinetics problems, and intrinsically limited potency are all factors favouring the selection of drug-resistant viral strains. Development of drug resistance is nowadays a major cause for treatment failure.

AIMS
The EuResist objectives included:

- integration of biomedical information from three large and expanding European databases;
- combination and availability of the best performing models into the final EuResist Combined Predictive System.

EXPECTED RESULTS
The EuResist Integrated Database has been realised by physically merging the founding ARCA, Arevir and Karolinska databases.

A Standard Datum has been defined in compliance with the definition proposed by the Forum for Collaborative HIV Research (www.hivforum.org).

Different predictive methods have been developed and compared. Three engines have been chosen as the best performers: Generative-Discriminative (GD), Evolutionary (EV) and Higher order interaction, or Mixed Effects (ME).

The EuResist Web interface has been developed under the guidance of virologists and physicians.

Potential applications:
The project can be considered as a pilot for Hepatitis C virus (HCV) and Hepatitis B virus (HBV) since a large antiviral treatment intervention has been started and the chronic nature of both of these viruses is expected to lead to the development of drug resistance.
Project Coordinator
Dr Francesca Incardona
Informa Srl
via dei Magazzini Generali 13
00184 Rome, Italy
Tel. +39 065758926
Fax +39 065759937
E-mail: f.incardona@informacro.info

Scientific Coordinator
Prof. Maurizio Zazzi
Università degli Studi di Siena
Department of Molecular Biology – Section of Virology
V lotto, piano 2 Policlinico Le Scotte
Viale Bracci
53100 Siena, Italy
Tel. +39 0577233850
Fax +39 0577233870
E-mail: zazzi@unisi.it

Partners
Dr Anders Sönnerborg
Karolinska Institutet
Karolinska University Hospital
Stockholm, Sweden

Dr Rolf Kaiser
Universitaetsklinikum Köln
Institute of Virology
Cologne, Germany

Dr Shai Fine
IBM Israel – Science and Technology Ltd
Haifa, Israel

Prof. Thomas Lengauer
Max-Planck Gesellshaft zur Foerderung der Wissenshaften e.v.
Computational Biology and Applied Algorithmics
Saarbrücken, Germany

Dr Fulop Bazso
MTA KFKI Reszecske-ES Magfizikai Kutatointezet
Department of Biophysics
Budapest, Hungary

Dr Andrea Petroczi
Kingston University
Kingston upon Thames, England, UK
BACKGROUND
Eurofungbase targeted the creation of conditions and facilities within Europe to widely apply all genomics technologies in filamentous fungal research. This is expected to expand knowledge and benefit Europe’s biotechnology industries, as well as help improve the prevention and treatment of fungal disease.

The project focused on several filamentous fungi for different reasons; one was Aspergillus nidulans for its long record of use as a fungal model organism.

The human pathogen Aspergillus fumigatus serves not only as a model pathogen, but becomes more and more a serious threat to human health. The project contributes to create the conditions and facilities within Europe to widely apply all genomics technologies in filamentous fungal research. This will greatly expand our knowledge about filamentous fungi. This new genomics information will thus be beneficial to Europe’s biotechnology industries and help to improve the prevention and treatment of fungal disease.

Problem:
Widespread genomic research leads to enormous amounts of data stored in many small databases across Europe. For integrated European genomic research, it is important that such data become easily accessible for all researchers.

AIMS
The aim was to develop a strategy to build up and maintain an integrated, sustainable European genomic database required for innovative genomics research of filamentous fungal model organisms of interest. This database will become a crystallisation point for related systems and could then be integrated and conserved in a central European genomic database.

EXPECTED RESULTS
Eurofungbase anticipated several results:

- contribution of the community to the manual annotation of important fungal genomes through annotation jamborees;
- realisation of an integrated sustainable fungal genomic database;
- realisation of a fungal genomics knowledge base for the Eurofungbase community and the European fungal biotech industry;
- intensified collaboration between the members of the network;
- individualised training of a next generation of young scientists in fungal genomics and biotechnological research.

Potential applications:
Fungi play an important role in White Biotechnology (e.g. biomass saccharification, biorefinery). The results of this project will find their way in new experimental approaches in those areas.
Project Coordinator

Prof. Cees A.M.J.J. van den Hondel
Leiden Universiteit
Institute Biology Leiden
Wassenaarseweg 64
2333 AL Leiden, Netherlands
Tel. +31 0715274938
E-mail: eurofung@biology.leidenuniv.nl

Partners

For the full list of participants and a list of members of the Fungal Industrial Platform, see http://eurofung.net/index.php?option=com_content&task=blogcategory&id=13&Itemid=14 and http://eurofung.net/index.php?option=com_content&task=blogcategory&id=12&Itemid=15 online.

Prof. Steve Oliver
University of Manchester
Manchester, England, UK

Prof. Dave Ussery
Technical University of Denmark
Lyngby, Denmark
BACKGROUND
The study of infectious disease, which is established in Europe in the form of various national research centres and a considerable number of laboratories, needs a multidisciplinary approach that brings together the different disciplines of molecular biology, immunology, cell biology and structural biology. The Network of Excellence is forging permanent links and structures between the different disciplines.

Problem:
There is an urgent need for research in the field of infectious diseases. Many pathogens become increasingly resistant to available drugs and antibiotics. The prevalence of antibiotic resistances is increasing in both developed and developing countries. They impose an important socioeconomic burden on the public, industry and the healthcare system.

AIMS
EPG seeks to stimulate multidisciplinary collaborative research activities, create a European training facility for teaching of scientists and physicians, and foster biotechnological applications and technology transfer to European companies.

EXPECTED RESULTS
The expected deliverables are innovations in the areas of diagnostics, drug and vaccine development. The project will promote discoveries leading to the development of innovative diagnostic tools, the identification of new antigens and the deciphering of host defence mechanisms. The consortium will analyse the mechanisms conferring to the development and spread of antibiotic resistances among bacteria.

EPG will establish a higher standard in the infectious diseases teaching field. Thus, a permanent and durable structure will be created that will maximise the contributions of European scientists to this area.

Potential applications:
EPG will promote discoveries leading to the development of innovative diagnostic tools, the discovery of novel anti-infectious agents and their targets, the identification of new antigens and the deciphering of host defence mechanisms.

Project Coordinator
Prof. Dr Jörg Hacker
Bayerische Julius-Maximilians-Universität Würzburg
Institut für Molekulare Infektionsbiologie
Röntgenring 11
97070 Würzburg, Germany
Tel. +49 931312575
Fax +49 931312578
E-mail: j.hacker@mail.uni-wuerzburg.de

Partners
Prof. Dr Jürgen Wehland
Helmholtz-Zentrum für Infektionsforschung
Braunschweig, Germany

Prof. Dr Thomas F. Meyer
Max-Planck-Institut für Infektionsbiologie
Berlin, Germany

Dr Carmen Buchrieser
Institut Pasteur
Paris, France

Dr Jean-Michel Claverie
Centre National de la Recherche Scientifique (CNRS)
Marseille, France

Project number: LSHB-CT-2005-512061 EC contribution: €6 700 000 Duration: 60 months Type: Network of Excellence Starting date: 1 July 2005
EUROPEAN COHORT COORDINATING NETWORK ON HIV DRUG RESISTANCE

BACKGROUND
EuropeHIVResistance will create and maintain a pan-European cohort with a network of virological reference centres in over 30 European countries.

Problem:
HIV resistance to one or more antiretroviral drugs is spreading throughout the world. Of major concern is the possibility that no effective antiretroviral drugs will be available for newly infected patients.

AIMS
The aim of EuropeHIVResistance is to create a large pan-European cohort for studying the appearance, spread, virological determinants and clinical consequences of HIV resistance under joint standards linked to a common shared self-sustainable database.

EXPECTED RESULTS
The EuropeHIVResistance network will make a major contribution in the following ways: by (i) expanding HIV-drug resistance surveillance and follow-up activities to a pan-European level; (ii) decreasing the fragmentation of HIV resistance research in central and eastern Europe; (iii) increasing the level of virological expertise and skills in HIV resistance in this region; and (iv) securing the desired exchange of good practices between the HIV/AIDS cohorts in Europe and the World Health Organization (WHO).

Potential applications:
This network will help develop better guidelines for the treatment and prevention of HIV, as well as for the prevention of drug-resistant HIV variants transmission.

Project Coordinator
Prof. Dr Charles Boucher
University Medical Center Utrecht
Department of Virology, GO4.614
Heidelberglaan, 100
NL-3584 CX Utrecht
Tel: +31-88-7556526
Fax: 31-30-7555426
Email: c.boucher@umcutrecht.nl

Partners
Dr Jan Albert
Swedish Institute for Infectious Diseases Control
Solna, Sweden

Dr Claus Nielsen
Statens Serum Institut Copenhagen
Copenhagen, Denmark

Prof. Anne-Mieke Vandamme
Katholieke Universiteit Leuven
Leuven, Belgium

Prof. Claudia Balotta
University of Milan
Milan, Italy

Dr Jean-Claude Schmit
Centre de Recherche Public - Santé
Luxembourg, Luxembourg

Dr Angelos Hatzakis
Hellenic Scientific Society for the Study of AIDS and Sexually Transmitted Diseases
Athens, Greece

Dr Ricardo Camacho
Universidade Nova de Lisboa
Lisbon, Portugal

Dr Birgitta Äsjö
National Institute of Public Health
Oslo, Norway

Dr Elisabeth Puchhammer-Stöckl
Medical University of Vienna
Vienna, Austria
Dr Mika Salminen
National Public Health Institute
Helsinki, Finland

Dr Klaus Korn
University of Erlangen-Nurnberg
Erlangen, Germany

Dr Andrzej Horban
Hospital for Infectious Diseases
Warsaw, Poland

Dr Bonaventura Clotet
Fundacio IrsiCaixa
Badalona (Barcelona), Spain

Dr Danail Beshkov
National Center of Infectious and Parasitic Diseases
Sofia, Bulgaria

Dr Leonidios Kostrikis
University of Cyprus
Nicosia, Cyprus

Dr Janos Minarovits
National Public Health and Medical Officer Service
Budapest, Hungary

Prof. Baiba Rozentale
Infectology Center of Latvia
Riga, Latvia

Dr Algirdas Griskevicius
Lithuanian AIDS Center
Vilnius, Lithuania

Prof. Adrian Streinu Cercel and Prof. Matei Bals
Institute for Infectious Diseases
Bucharest, Hungary

Prof. Mario Poljak
University of Ljubljana
Slovenian AIDS Reference Centre
Ljubljana, Slovenia

Prof. Francoise Brun-Vezinet
Bichat Claude Bernard University Hospital
Paris, France

Prof. Vadim Pokrovsky
Federal State Institution Central Research Institute of Epidemiology
Moscow, Russia

Dr Olga Kravchenko
Ukrainian AIDS Center
Kiev, Ukraine

Dr Suzie Coughlan
University College Dublin
Dublin 4, Ireland

Dr Deenan Pillay
Royal Free Hospital and University College Medical School
London, England, UK

Dr Marie Bruckova
National Institute of Public Health
Prague, Czech Republic

Dr Kai Zilmer
West-Tallinn Central Hospital
Tallinn, Estonia

Dr Maja Stanojevic
University of Belgrade School of Medicine
Belgrade, Serbia

Dr Danica Stanekova
Slovak Medical University
Bratislava, Slovakia

Dr Zehava Grossman
Public Health Laboratories, Ministry of Health
Jerusalem, Israel

Prof. Victor Marievskiy
Institute of Epidemiology and Infectious Diseases
Kiev, Ukraine

Dr Sabine Yerly
Hospital Cantonal Universitaire Geneve
Geneva, Switzerland

SMEs

Ms Alice Posthumus-Plantinga
Virology Education
Utrecht, Netherlands

Dr Shalom Sayada
Advanced Biological Laboratories SA
Luxembourg, Luxembourg

Dr Paul Wallace
Quality Control for Molecular Diagnostics
Glasgow, Scotland, UK
SURVEILLANCE OF TUBERCULOSIS IN EUROPE

BACKGROUND
EuroTB was established in 1996 to improve the contribution of epidemiological surveillance to tuberculosis (TB) control in Europe. The project coordinated the surveillance of TB in the 53 countries of the World Health Organization’s (WHO) European Region through contact points based in the national TB surveillance institutions that report standardised data annually to EuroTB.

Problem:
TB is a directly communicable condition and transmission most often occurs following the inhalation of droplets from a person with active TB. It is a serious disease which can lead to death, disability and chronicity.

AIMS
The mission statement of EuroTB: ‘To improve the contribution of surveillance to TB control in Europe’.

The general objectives of the project included:
- coordinating and enhancing surveillance of TB in Europe;
- monitoring and comparing trends in TB morbidity in Europe and characterising vulnerable populations;
- contributing to the harmonisation of the investigation of TB contacts and the management of TB outbreaks at the national and EU levels.

EXPECTED AND OBTAINED RESULTS
The results of EuroTB activities are documented in the following manner:

1. yearly reports: ‘Surveillance of tuberculosis in Europe’;
2. European TB data sets: case-based (1) and aggregated (6);
3. MDR-TB: reports and a genotype website;
4. final report on molecular surveillance of MDR-TB (end-2007);
5. scientific papers and communications;
6. ad hoc reports on expert consultations following country visits to enhance surveillance;
7. quarterly EuroTB newsletter.

Potential applications:
1. Formulation of policy relating to TB and MDR-TB.
2. Scientific pursuit.
3. Use for preparation of reports, lectures, and presentations by experts.
4. Information for awareness campaigning.

Project Coordinator
Dr Dennis Falzon
Institut de Veille Sanitaire
12, rue du Val d’Osne
94415 Saint-Maurice, France
Tel: 00 33 1 41 79 68 04
Fax: 00 33 1 41 79 68 02
E-mail: d.falzon@invs.sante.fr
Partners
Dr. Kristin Kremer and Dr. Herre Heersma
National Institute of Public Health and the Environment
Bilthoven, Netherlands

Other partners (not contributing to the budget)
Dr. Andrea Ammon
European Centre for Disease Prevention and Control
Stockholm, Sweden

Dr. Mehran Hosseini
HIV/AIDS, Tuberculosis & Malaria, WHO
Geneva, Switzerland

Dr. Abigail Wright
Stop TB Department, WHO
Geneva, Switzerland

Dr Richard Zaleskis
WHO Regional Office for Europe
Copenhagen, Denmark

EuroTB Advisory Committee Members
Dr Jean-Paul Klein
Bundesministerium fuer Gesundheit und Frauen
Vienna, Austria

Dr Richard Zaleskis
WHO Regional Office for Europe
Copenhagen, Denmark

Dr Petri Ruutu
KTL
Helsinki, Finland

Dr Michael Forssbohm
Landeshauptstadt Wiesbaden, Gesundheitsamt, Abteilung fuer Infektionsschutz,
Wiesbaden, Germany

Prof. Luke Clancy
International Union Against Tuberculosis & Lung Disease (UNION) – European region
Newcastle (Co. Dublin), Ireland

Dr Vincent Kuyvenhoven
KNCV Tuberculosis Foundation
The Hague, Netherlands

Dr Maria Korzeniewska-Kosela
National TB and Lung Diseases Institute
Warsaw, Poland

Dr. Elmira Ibraim
Institute of Pneumology Marius Nasta
Bucharest, Romania

Prof. Francis Drobniewski
Institute of Cell and Molecular Sciences
London, England, UK

Dr John Watson
Health Protection Agency
London, England, UK
THE Fungal cell wall AS A TARGET FOR ANTIFUNGAL THERAPIES

BACKGROUND
Fungal pathogens represent the major eukaryotic agents of serious infection in European countries. Infections due to *Candida albicans* and *Aspergillus fumigatus* are the most common and clinically important pathogens and were therefore the focus of this project. There is an urgent need to generate new, efficacious, non-toxic compounds with broad-spectrum antifungal activity. The challenge for FUNGWALL was to investigate mechanisms of fungal cell wall synthesis in order to identify new antifungal targets to control human fungal infections in Europe.

AIMS
The cell wall of pathogenic fungi is a good target for the development of new drugs for the following reasons: (1) The fungal cell wall is required for fungal cell integrity and is essential for fungal growth and for virulence; (2) Polysaccharidic components of the cell wall are unique to fungi and consequently, putative inhibitors of the biosynthetic pathways responsible for cell wall construction can be potent antifungals.

The objectives of FUNGWALL centred on the assembly of the cell wall polysaccharide skeleton. The project partners focused on the identification of new-generation antifungals that target fungal cell wall biosynthesis.

OBTAINED RESULTS
The achievements of the project have placed Europe in a world-leading position for analysis of fungal cell wall. The coupling of biochemical and genetic methodologies was extremely synergistic for tackling this problem and has given a unique flavour to FUNGWALL.

The 36-month FUNGWALL project led to many achievements, including:

- validation of chitin synthesis as a legitimate target for antifungal chemotherapy;
- elucidation of the mode of action of aminocandin through various genomic strategies;
- development of methodologies to analyse carbohydrate-protein interactions;

Thus, several new drug targets were identified during the course of FUNGWALL:

- chitinases and endo β1,3 glucanases;
- new transglycosidases remodelling β glucans;
- O-mannosyltransferases.

Project Coordinator
Prof. Jean-Paul Latge
Unité des Aspergillus
Institut Pasteur
75724 Paris, France
Tel. +33 01406135 19
E-mail: jplatge@pasteur.fr
Partners

Prof. Neil A. R. Gow
School of Medical Sciences
Aberdeen, Scotland, UK

Dr Frans M. Klis
Swammerdam Institute for Life Sciences
Amsterdam, Netherlands

Prof. Jean-Marie François
UMR CNRS 5504 & INRA 792
Toulouse, France

Dr Bernard Henrissat
CNRS, Universités Aix-Marseille I & II
Marseille, France

Dr Carlos R. Vazquez de Aldana
CSIC-Universidad de Salamanca
Salamanca, Spain

Prof. Dr Sabine Strahl
Ruprecht-Karls-Universität Heidelberg
Heidelberg, Germany

Dr Javier Arroyo
Universidad Computense de Madrid
Madrid, Spain

Dr Daan van Aalten
University of Dundee
Dundee, Scotland, UK

Dr Michael T. Black
Novexel - Parc Biocitech
Romainville, France
BACKGROUND
GenOSenpt used a multidisciplinary fundamental genomics approach (gene expression, structural genomics and population genetics) to examine genetic predisposition to sepsis. The partners aimed to standardise protocols for genotyping, facilitate application of new knowledge in functional and structural genomics, harmonise high-throughput genotyping and quality control between major European centres, and contribute to reducing sepsis-related mortality in European healthcare.

AIMS
The major milestones of GenOSenpt were:

- consensus definitions and the setting up of an inclusion and exclusion criteria database;
- collection of blood samples from about 2,500 patients all over Europe;
- blood genotyping and genetic testing;
- identification of relevant candidate genes and their genomic variations;
- genetic epidemiology study to be performed in European intensive care units (ICUs);
- definition of a diagnostic Single-Nucleotide Polymorphism (SNP) set.

EXPECTED AND OBTAINED RESULTS
The expected results of GenOSenpt are that, among others, it will:

- contribute to unravelling the genetic predisposition of sepsis;
- define novel candidate genes by gene expression studies;
- include genes directing pathways of the host immune response to infection and inflammation, and of programmed cell death.

Potential applications:
The GenOSenpt findings will contribute to reducing sepsis mortality and morbidity in European ICUs.

Project Co-Coordinators
Prof. Julian Bion and Dr Nathalie Mathy
European Society of Intensive Care Medicine
Brussels, Belgium
Tel. 32 2 5590353
Fax 32 25270062
E-mail: public@esicm.org

Partners
Prof. Dr Frank Stüber
Rheinische Friedrich-Wilhelms-Universität Bonn
Bonn, Germany

Prof. Jean-Daniel Chiche
INSERM
Paris, France

Prof. Adrian Hill
University of Oxford
Oxford, England, UK

Prof. Vito Marco Ranieri
Università degli Studi di Torino
Turin, Italy

Prof. Jordi Rello
University Rovira & Virgili – Hospital Universitari Joan XXIII
Tarragona, Spain

Prof. Thomas Meitinger
Helmholtz Zentrum München
Neuherberg, Germany

Dr Yoram Weiss
Hadassah Medical Organisation
Jerusalem, Israel

Prof. Dr Stefan Russwurm
SIRS-Lab GmbH
Jena, Germany

Prof. Marion Schneider
University Ulm Medical Faculty
Ulm, Germany

Prof. Konrad Reinhart
Klinikum der Friedrich-Schiller-Universität Jena
Jena, Germany

Dr Vladimir Sramek
Masaryk University Brno Medical Faculty
Brno, Czech Republic

Dr Ilona Bobek
National Medical Center
Budapest, Hungary

Dr Silver Sarapuu
Tartu University Clinics
Tartu, Estonia
GRACE is a Network of Excellence focusing on the complex and controversial field of community-acquired lower respiratory tract infections (CA-LRTIs). The promiscuous use of antibiotics to treat LRTIs accounts for a majority of the community burden of antibiotic use and contributes dramatically to the rising prevalence of resistance among major human pathogens. GRACE will combat antimicrobial resistance through integrating centres of research excellence and exploit genomics in the investigation of CA-LRTIs.

Problem:
CA-LRTIs are the leading reason for seeking medical care. Yet there are few conditions in medicine that are so controversial. These uncertainties have resulted in prescriptive promiscuity, which largely explains the escalating antibiotic resistance of common bacterial respiratory pathogens in the community. There are no good studies of sufficient size on detecting bacterial aetiology of LRTIs and on diagnosis of Community-acquired pneumonia (CAP) in primary care.

AIMS
GRACE aims to strengthen European human and microbial genomic research excellence, focusing on CA-LRTIs, which is the leading reason for seeking medical care and consuming antibiotics. The hallmark of the Network of Excellence created by GRACE will be the integration of research platforms creating a European-wide infrastructure to investigate and improve the management of CA-LRTIs.

EXPECTED AND OBTAINED RESULTS
- Delivery of an Internet Web portal under a common corporate identity integrating all IT functions.
- Development of a platform, GOS (GRACE Online System), serving internal purposes and dissemination of results to the public.
- Establishment of a microbial diagnostic network of laboratories to develop novel rapid genome-based diagnostic tests for the detection of pathogens.
- Identification of susceptibility genes by using candidate genes as well as a genome-wide association approach in more severe LRTIs, such as invasive pneumococcal disease cases. As a result of candidate gene studies, the list of known susceptibility genes has been extended to eight in total (i.e. MBL, CD32, CRP, PTPN22, TLR1-6-10, MAL/TIRAP, NFKBIA, and NFKBIE).
- Detection and analyses of new viruses to contribute to our understanding of the mechanisms of LRTIs, and development of methods that may be applicable for analysis of the etiology of other infectious diseases.
- Establishment and evaluation of the molecular methods that will be used using an existing collection of pneumococcal isolates.
- Variability in both prescription and antibiotic choice across Europe.
Project Coordinator
Prof. Herman Goossens
University of Antwerp
Department of Medical Microbiology
Universiteitsplein 1 S3
B-2610 Wilrijk-Antwerp, Belgium
Tel. +32 38213789
Fax +32 38254281
E-mail: herman.goossens@uza.be

Manager
Dr. Katherine Loens
University of Antwerp
Department of Medical Microbiology
Universiteitsplein 1 S009a
B-2610 Wilrijk-Antwerp, Belgium
Tel. +32 38202418
Fax +32 38202752
E-mail: katherine.loens@ua.ac.be

Partners
Prof. Greet Ieven
Universiteit Antwerpen - Campus Drie Eiken
Wilrijk, Belgium

Dr. Alexander Gorbalenya
Leids Universitair Medisch Centrum
Leiden, Netherlands

Dr. Derrick Crook
University of Oxford
Oxford, England, UK

Prof. David Holden
Imperial College London
London, England, UK

Dr. Birgitta Henriques Normark
Smittskyddsinstitutet
Solna, Sweden

Prof. Christopher C. Butler
University of Wales College of Medicine
Cardiff, Wales, UK

Prof. Theo Verheij, Robert Veen,
Dr Anton M. van Loon
Universitair Medisch Centrum Utrecht
Utrecht, Netherlands

Dr. Paul Little
University of Southampton
Southampton, England, UK

Prof. Roger Finch
University of Nottingham
Nottingham, England, UK

Prof. Francesco Blasi
Universita degli Studi di Milano
Milan, Italy

Dr. Peter Garred
Tissue Typing Laboratory - Section 7631
Copenhagen, Denmark

Prof. Staffan Normark
Karolinska Institutet
Solna, Sweden

Prof. Régine Hakenbeck
Universität Kaiserslautern
Kaiserslautern, Germany

Prof. Hermínia de Lencastre
Instituto de Tecnologia Química e Biológica
Oeiras, Portugal

Dr. José Campos
Instituto de Salud Carlos III
Majadahonda, Spain

Prof. JoAnna Coast
University of Birmingham
Birmingham, England, UK

Prof. Lia van der Hoek
University of Amsterdam
Amsterdam, Netherlands

Dr. Richard Smith
London School of Hygiene & Tropical Medicine
London, England, UK

Dr. Bernadett Kovacks
Drug Research Centre Ltd
Balatonfüred, Hungary

Dr. Antoni Torres
Clinical Thorax Institute
Barcelona, Spain

Dr. Zuzana Bielicka
Clinical Research Associates and Consultants
Bratislava, Slovakia

Dr. Maciek Godycki-Cwirko
Medical University of Lodz
Lodz, Poland

Dr. Jordy Almirall
Hospital of Mataro
Mataro, Spain

Dr. Tom Schaberg
Diakoniekrankenhaus
Rotenburg, Germany

Dr. Sigvard Mölstad
Linköpings Universitet
Jönköping, Sweden

SMEs:
Guido Krupp
AmpTec GmbH
Hamburg, Germany

Jan Schouten
MRC-Holland
Amsterdam, Netherlands

Guus Simons
PathoFinder
Maastricht, Netherlands

Thierry Leclipteux
Coris BioConcept
Gembloux, Belgium

Scientific societies:
Javier Garau
European Society for Clinical Microbiology
and Infectious Diseases (ESCMID)
University of Barcelona
Terrassa, Spain

Séverin Tania
European Respiratory Society (ERS)
Lausanne, Switzerland
HEALTH ALLIANCE FOR PRUDENT PRESCRIBING, YIELD AND USE OF ANTIMICROBIAL DRUGS IN THE TREATMENT OF RESPIRATORY TRACT INFECTIONS

http://www.happyaudit.org/

BACKGROUND
The HAPPY AUDIT project aims to strengthen the surveillance of respiratory tract infections (RTIs) in primary healthcare in Europe through the development of intervention programmes targeting general practitioners (GPs), parents of young children and healthy adults. The intervention programme will curb the occurrence of bacterial resistance by reducing the prescription of unnecessary antibiotics for RTIs and by improving the use of appropriate antibiotics in suspected bacterial infections.

Problem:
Infections caused by resistant bacteria lead to increased mortality, prolonged hospital stays and increased costs.

AIMS
HAPPY AUDIT aims to change people’s habits towards the prudent use of antimicrobial agents (antibiotics) via the Audit Project Odense (APO) method, developed and successfully tested by GPs in the Nordic countries.

EXPECTED RESULTS
The HAPPY AUDIT results will be available at local and European level, and in the education sector, ensuring that the message has a deep impact on the younger generation. The intervention will have strong visual potential that will make it appealing to people at all levels. The ambition is to create a differentiated teaching material that is suited for different age groups.

Potential applications:
The project will show examples on best practice and how GPs will benefit from intervention activities. They will underline the message that there are barriers to overcome, but that the changing of behaviour towards prudent use of antibiotics will lead to a healthier society. In this way the intervention will create goodwill, understanding and backing for the public.

The HAPPY AUDIT is using a bottom-up approach in the trial to change behaviour among professionals. Patients may act as professionals if their knowledge about their diseases is relevant and rational. Especially for young people, familiar with the modern electronic communication messages, there will be a tendency to discuss with doctors and nurses about new therapies as well as question old ones.

Project Coordinator
Dr Lars Bjerrum
Research Unit for General Practice
J.B. Winsløws Vej 9A
5000 Odense C, Denmark
Tel. +45 65503091
Fax +45 65503980
E-mail: lbjerrum@health.sdu.dk
Partners

Dr Anders Bjerrum
General Practice Consultants
Odense C, Denmark

Dr Jens Peter Kampmann
Ministry for the Interior and Health
Copenhagen, Denmark

Dr Ingvar Ovhed
Lund University
Malmö University Hospital
Malmö, Sweden

Dr Ingrid Schmidt
National Board of Health and Welfare
Stockholm, Sweden

Dr Ruta Radzeviviene
Mano seimos gydytojas (My family doctor)
Klaipeda, Lithuania

Dr Ausra Pikelyte
Valstybine ligoniu kasa (State Patient Fund)
Klaipeda, Lithuania

Dr Anatoliy Reutskiy
Association of Family Doctors
Kaliningrad, Russia

Dr Carl Llor
Spanish Society of Family Medicine
Barcelona, Spain

Dr Beatriz Gonzáles López-Valcárcel
University of Las Palmas de Gran Canaria
Las Palmas, Spain

Dr Justo Jesús Artiles Sánchez
Consejería de Sanidad del Gobierno de Canarias
Las Palmas, Spain

Dr Lidia Caballero
Misiones Association of General Family Medicine and Health Team
Posadas, Argentina

Dr Marit Rønning
World Health Organization, Collaborating Centre for Drug Statistics Methodology
Oslo, Norway

Dr Christos Lionis
World Organisation of Family Doctors in Europe
c/o University of Crete
Heraklion, Crete
BACKGROUND
Considerable efforts have been made to date to harmonise data on nosocomial infections (NI) and antibiotic resistance (AR) in Europe. As a result, large variability in preventive practices and outcomes across countries has become evident. Based on this experience, the IPSE project aimed at resolving these persisting differences through the following approaches:

- providing health services with timely information, evidence-based guidelines and educational tools to manage effectively the risk of NI and AR;
- strengthening the status of professionals involved in infection control activities;
- fostering the control of the emergence and spread of multiple resistant organisms in the intensive care unit (ICU) through an integrated surveillance programme;
- monitoring the level of achievement of the NI and AR control programmes.

Problem:
Considerable efforts have been made to date to harmonise data on healthcare-associated infections (HAI) and antimicrobial resistance (AMR) in Europe. As a result, large variability in preventive practices and outcomes across countries has become evident.

AIMS
IPSE aimed to reduce significant differences that persist in the risks associated with HAI and AR in the healthcare of countries in Europe.

EXPECTED AND OBTAINED RESULTS
IPSE results include the following:

- harmonisation and support for professional profiles and training for infection control practitioners;
- European standards and indicators for public health surveillance and guidelines for the control of HAI and AMR;
- event warning and rapid exchange on NI and AMR;
- sustaining and extending HELICS NI surveillance in Europe;
- improving surveillance and control of antibiotic resistance and hygienic precautions in the ICU;
- understanding the interaction of antibiotic consumption, infections and resistance patterns in the ICU;
- feasibility of surveillance of HAI in European nursing homes and home care.

Project Coordinator
Prof. Jacques Fabry
Université Claude Bernard Lyon1
Laboratoire d’épidémiologie et Santé publique
8, avenue Rockefeller
69373 Lyon, France
Tel: +33/4-78.77.75.99
Fax: +33/4-78.00.93.86
E-mail: helics@adm.univ-lyon1.fr

Project number: 2004216 EC contribution: €1 006 916 Duration: 36 months
Type: Grant Agreement Starting date: 1 January 2005
Partners

Ms Ana Paula Coutinho
WHO,
Copenhagen, Denmark

Dr. Hajo Grundmann
National Institute for Public Health
and the Environment
Bilthoven, Netherlands

Dr. Carl Suetens
L’Institut scientifique de Santé publique
Brussels, Belgium

Dr. Hakan Hanberger
Swedish Institute from Infectious Disease Control
Solna, Sweden

Prof. Uwe Frank
Universitätsklinikum Freiburg
Freiburg, Germany

Dr. Maria Luisa Moro
Regione Emilia-Romagna
– Agenzia Sanitaria Regionale
Bologna, Italy

Dr. Andreas Voss
European Society of Clinical Microbiology
and Infectious Diseases
Taufkirchen, Germany

Prof. Barry Cookson
Health Protection Agency
London, England, UK
CONTROL STRATEGIES FOR VISCERAL LEISHMANIASIS (VL) AND MUCOCUTANEOUS LEISHMANIASIS (MCL) IN SOUTH AMERICA: APPLICATIONS OF MOLECULAR EPIDEMIOLOGY

BACKGROUND
The LeishEpiNetSA project involves comparative investigations between endemic areas for visceral leishmaniasis (VL) and mucocutaneous leishmaniasis (MCL) in Paraguay, Peru, Brazil and Venezuela, and will strengthen local capacities for research and Latin American-European collaborations.

LeishEpiNetSA will develop a full range of microsatellite markers and multi-locus sequencing typing (MLST) of housekeeping genes for the Leishmania braziliensis complex and for L. guyanensis. It will also establish in South America the procedures for microsatellite and MLST analysis for L. infantum, which have been developed and proven as epidemiological tools by a European network.

Problem:
A full and detailed understanding of the transmission cycles and molecular epidemiology of VL and MCL is necessary to develop disease control and surveillance.

AIMS
The overall aim is to apply molecular methods to improve the understanding of the epidemiology of the subgenus Vannia and L. infantum in South America.

EXPECTED RESULTS
A range of new epidemiological tools will be produced. Distribution of drug-resistant genotypes will be mapped. A wealth of data will be deposited in a new database, linked to a European database. An expanded South American repository for Leishmania will be established and cooperation will be improved between South American researchers. A series of publications and reports will be written to disseminate findings from the project.

Potential applications:
Improved strategies for surveillance and control, with consequent benefits to public health and the alleviation of poverty.

Project Coordinator
Prof. Michael A. Miles
London School of Hygiene and Tropical Medicine
Department of Infectious and Tropical Diseases
Keppel Street
London WC1E 7HT
England, UK
Tel. +44 2079272340
E-mail: michael.miles@lshtm.ac.uk

Partners
Dr Gabriele Schoenian
Charite Universitaetsmedizin Berlin
Berlin, Germany
Dr Carmen Canavate
Instituto de Salud Carlos III
Madrid, Spain
Dr Jean-Claude Dujardin
Prin Leopold Instituut voor Tropische Geneeskunde
Antwerp, Belgium

Project number: 015407 ■ EC contribution: €2 489 823 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 January 2006
Dr Lenea Campino
Universidade Nova de Lisboa/Instituto de Higiene e Medicina Tropical
Lisbon, Portugal

Dr Semiramis do Monte
Centro de Ciências da Saúde da Universidade Federal do Piauí
Teresina, Piauí, Brazil

Dr Rolando Oddone
Universidad Nacional de Asunción
Asunción, Paraguay

Dr Jorge Arevalo
Universidad Peruana Cayetano Heredia
Lima, Peru

Dr Maria Norma Melo
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

Prof. Maria Dora Feliciangeli
Universidad de Carabobo-Centro de Investigaciones Biomedicas
Caracas, Venezuela

Dr Elisa Cupolillo
Sociedade de Promoção da Casa de Oswaldo Cruz
Rio de Janeiro, Brazil

Dr Joachim Clos
Bernhard Nocht Institute for Tropical Medicine
Hamburg, Germany
FULLY AUTOMATED AND INTEGRATED MICROFLUIDIC PLATFORM FOR REAL-TIME MOLECULAR DIAGNOSIS OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS

BACKGROUND
Methicillin-resistant *Staphylococcus aureus* (MRSA), a virulent organism resistant to many drugs, is responsible for many nosocomial and community-acquired infections. Effective diagnostics is a strategic key element in the campaign against the spread of MRSA, allowing better infection surveillance and control measures, as well as more efficient patient treatment and/or isolation options. MagRSA will develop a new diagnostics platform providing a fast, simple and accurate identification of MRSA from clinical samples.

Problem:
According to the World Health Organization (WHO), resistance of *Staphylococcus aureus* to methicillin, its usual antibiotic, increased from 2% in 1975 up to 60% today in some areas and no new antibiotic is expected on the market for many years.

AIMS
MagRSA seeks to develop a new diagnostics platform that will provide a fast, simple, automated and accurate identification of MRSA from clinical samples. The simplicity of the proposed technology concept — integrating cost-effective and widely available components — allows for the provision of low cost systems, a prerequisite condition for the large adoption of molecular tests by hospitals.

EXPECTED RESULTS
Procedure improvement: The steps of the diagnostic protocol were significantly improved in terms of specificity, sensitivity and turn-around time (three hours instead of six hours) and relies on the following steps:

1. The diagnostic protocol relies on a new and clinically validated procedure that consists of a direct one-step enrichment of *S. aureus* present in either nasal or inguinal swabs, followed by DNA extraction of immunocaptured bacteria and their identification by multiplex sequence amplification using real-time quantitative PCR.

Potential applications:
MagRSA’s diagnostics platform will have potential applications in molecular diagnostics and be the most growing segment within the global in vitro diagnostics market.

Project Coordinator
Prof. Jacques Schrenzel
Geneva University Hospitals
Division of Infectious Diseases - Genomic Research Lab
Rue Micheli-du-Crest 24
1211 Geneva, Switzerland
Tel. +41 022 372 7301
Fax +41 022 372 7304
E-mail: jacques.schrenzel@genomic.ch

Partners
Dr Amar Rida
Spinomix SA
Lausanne, Switzerland

Dr Neven Zoric
TATAA Biocenter AB
Göteborg, Sweden

Dr Felix von Stetten
Institute of Microsystem Technology (IMTEK) at the University of Freiburg
Freiburg, Germany

Dr Manuel Gaboyard
ADEMTECH SA
Pessac, France

Dr Mabel Perrin
SCIPROM SàRL
St-Sulpice, Switzerland
BACKGROUND
Malaria is one of the three major infectious diseases. Although the disease is prevalent in the tropics and subtropics, it has caused a global emergency. Between 300 to 400 million cases with 1 million to 2 million deaths are recorded each year. A rapidly increasing resistance to antimalarial drugs calls for focused novel strategies to combat the disease. MalariaPorin is an interdisciplinary project aimed at taking genomic information forward to drug development. The Plasmodium falciparum genome project aimed at the accelerated discovery of novel antimalarial drug targets. Using P. falciparum genome data, MalariaPorin identified a single water/glycerol channel (aquaglyceroporin of Plasmodium falciparum (PfAQP)) present at the parasite/host interface. It is the only member of the aquaporin family encoded in the P. falciparum genome.

AIMS
The goals of MalariaPorin were to assess the suitability of PfAQP as an anti-malarial drug target and generate the conditions for further development of such drugs.

OBTAINED RESULTS
Significant progress was made in various areas related to the project, involving fields as diverse as Plasmodium physiology, pharmaceutical chemistry and biophysics. MalariaPorin provided first insights into osmotic protection systems of apicomplexan intracellular parasites, obtained fundamental and novel data on glycerol metabolism of P. falciparum, redefined known and specified new aquaporin protein structures that determine pore selectivity, identified therapeutically targetable aquaporin structures, and established solid and usable assay systems for testing potential aquaporin blockers, among others.

Potential applications:
PfAQP has the potential to be used as a target for malaria treatment. It is further envisioned that MalariaPorin may become the starting point for a wider strategy to assess the role of aquaporins in pathogenic parasites, such as Toxoplasma gondii, Trypanosoma brucei and Trypanosoma cruzi, and their potential use as drug targets.

Project Coordinator
Prof. Dr Eric Beitz
University of Kiel
Pharmaceutical Institute
Gutenbergstrasse 76
24118 Kiel, Germany
Tel. +49 431 880 1809
Fax +49 431 880 1352
E-mail: ebeitz@pharmazie.uni-kiel.de

Partners
Dr Jürgen Kun
University of Tübingen
Tübingen, Germany

Prof. Stefan Hohmann
University of Gothenburg
Gothenburg, Sweden

Prof. Sabine Flitsch
University of Manchester
Manchester, England, UK

Dr Bert de Groot and Dr Helmut Grubmüller
Max Planck Institute for Biophysical Chemistry
Göttingen, Germany

Prof. Peter Agre and Prof. Nirbhay Kumar
Johns-Hopkins University School of Medicine
Baltimore, Maryland, US
DEVELOPMENT OF NOVEL MANAGEMENT STRATEGIES FOR INVASIVE ASPERGILLOSIS

http://www.manasp.org

BACKGROUND
The overall objective of the MANASP project was to develop new treatment strategies for Invasive Aspergillosis (IA) — the major infectious complication of treating haematological malignancies with intensive chemotherapy or haematopoietic stem cell transplantation (HSCT).

AIMS
The aims of MANASP included:

- development of immunotherapeutic strategies for IA;
- development of improved diagnostic tests for IA with commercial potential;
- validation of a dendritic cell (DC)-based vaccine immunotherapy strategy in animal models to generate protective immunity against Aspergillus;
- use of genomic and proteomic techniques to identify new Aspergillus targets that interact with the host’s immune system.

EXPECTED AND OBTAINED RESULTS
The results of the MANASP include:

- identification of different pattern recognition receptors in response to A. fumigatus and their role in activating DCs;
- identification of PAMPs of A. fumigatus useful for immunotherapy strategies;
- characterisation of Aspergillus-specific T-cell response in healthy individuals;
- development of an assay to detect Aspergillus DNA with high specificity;
- commercialisation of the assay into an affordable and rapid diagnostic test.

Potential applications:
Incorporation of diagnostic tests will facilitate research trials of new antifungal agents or other novel therapies, and wider application of this technology will enable the treatment of other groups of patients (outside the Haematological Malignancy field).

Project Coordinator
Prof. Hermann Einsele
University of Wuerzburg
Medizinische Klinik II
Klinikstrasse 6 – 8
97070 Wuerzburg, Germany
Tel. +49 931 20170010
Fax +49 931 20136409
E-mail: einsele_h@klinik.uni-wuerzburg.de

Partners
Dr Niklas Finnstrom
Sangtec Molecular Diagnostics
Bromma, Sweden

Prof. Tom Rogers
Trinity College
Dublin 8, Ireland

Prof. Jean Paul Latgé
Institute Pasteur
Paris, France

Prof. Luigina Romani
University of Perugia
Perugia, Italy

Dr Jean Kadouche
Monoclonal Antibody Therapeutics
Evry, France

Prof. Axel Brakhage
Leibniz Institute for Natural Product Research and Infection Biology
Jena, Germany

Dr Georg Rauser
Miltenyi Biotec
Bergisch Gladbach, Germany

Prof. Jean Marie François
Institut National des Sciences Appliquées
Toulouse, France
BACKGROUND

Recent genomic technologies allow the study of global physiological processes in microbes. Their application to the study of pathogens enables researchers to search for new medicines to combat infection, avoid the emergence of resistance against them, and help anticipate therapies for new emerging diseases and devise treatments. Predictive microbiology may also be used to anticipate the presence of unexpected potential pathogens. Both industrial and sustained public sector efforts are needed to fully develop the promising potential of this research frontier of the microbial world.

Problem:

The ability to effectively treat microbial infections will reduce morbidity, and have a positive impact on health management policies. The discovery of new antibacterial agents against resistant micro-organisms is an urgent and vital need. The social costs incurred by the incidence of infectious diseases in the population at large, and in particular the elderly and the productive age sectors, are enormous. Hospitalisation costs per patient run above about 500 € per day. Curbing the spread of resistant pathogens will result in the attainment of high standards in human health care, it will reduce social and public healthcare costs and will therefore have a beneficial impact on the citizens.

AIMS

The micro-MATRIX workshop aimed to discuss microbial functional genomics as a powerful and innovative tool; to discover new cellular targets that would be used to counteract bacterial resistance to antibiotics; and to further avoid the generation and spread of new resistances.

OBTAINED RESULTS

The workshop conclusions were summarised in a report (http://www.cnb.csic.es/~mvicente/micro-MATRIX+cover.pdf) submitted to the Commission. It provided a roadmap to implement a research activity based on functional genomics to tackle the problem of antibiotic resistance and discovery. A summary of the report was presented at the PathoGenoMics ERA-NET Constituent Assembly in Berlin on 14 October 2004.

Potential applications:

Genomics can contribute to combating antibiotic resistance and comparative genomics yields information on the universality of targets in important pathogens. Functional genomics helps us understand how to avoid the path to resistance, and genomics research will contribute to increasing the amount of antibiotic generated by the producer organisms.

Project Coordinator

Prof. Miguel Vicente
Centro Nacional de Biotecnología CSIC
Darwin 3, Campus de Cantoblanco
28049 Madrid, Spain
E-mail: mvicente@cnb.uam.es

Partners

Prof. Eliora Ron
Tel-Aviv University
Tel Aviv, Israel

Dr. Cecília Arraiano
ITQB Universidade Nova de Lisboa
Lisbon, Portugal

Dr. Garry Blakely
University of Edinburgh
Edinburgh, Scotland, UK

Prof. Anthony Pugsley
Institut Pasteur
Paris, France

Dr. Antonio Martinez
PROGENIKA Biopharma SA
Derio (Vizcaya), Spain
Infections caused by antimicrobial-resistant bacteria (AMRB) account for an increasing proportion of healthcare-associated infections in European hospitals, particularly in intensive care units (ICUs). Increased prevalence of resistance to antibiotics in major hospital pathogens is associated with adverse outcomes of patients affected, and includes delayed appropriate therapy or even failure of therapy, as well as increased mortality.

While the optimal strategies for control of AMRB remain debated, understanding the dynamics of resistance and the relative contribution of the most important determinants of dissemination of AMRB (cross-transmission via contacts and antimicrobial selective pressure), is needed to better define these strategies. The integration in these approaches of rapid molecular diagnostic testing for AMRB carriage may improve the timeliness and efficacy of control measures.

The overall objective of MOSAR is to provide advanced knowledge in the dynamics of transmission of AMRB, and address the controversies surrounding control measures by testing different strategies to combat the emergence and spread of antimicrobial resistance, focusing on endemic or emerging AMRB in hospitals, now spreading into the community.

The results anticipated by the MOSAR partners include the following:

1. development of standards for conventional methods for detection of AMRB in screening samples;
2. development and validation in the clinical setting of high-throughput molecular-based methods for detection of resistant bacteria in screening for...
carriage of AMRB in clinical samples, and assessment of their cost-utility;

3. assessment from prospective, multi-centre studies in areas with high prevalence of antimicrobial resistance, of the relative efficacy and cost-effectiveness of different control strategies including enhanced standard precautions;

4. development of mathematical models integrating the contribution of the intrinsic epidemicity of MRSA, of cross-transmission and of antibiotic use in the dynamics of resistance, to be translated into user-friendly interfaces for use by infection control personnel.

Potential applications:
Results from MOSAR will inform healthcare workers and decision-makers on strategies for forecasting and mastering antimicrobial resistance. The project’s results should increase awareness of nosocomial pathogens such as vancomycin-resistant enterococci (VRE) as an emerging cause of hospital acquired infections.

MOSAR will contribute to developing the next generation state-of-the-art technologies of diagnostic tests. Existing molecular tests and the newly developed technologies will be adapted to the different needs of the laboratories and countries participating in MOSAR.

Knowledge gained through MOSAR will help format education and training of healthcare personnel and beyond.

Project Coordinator

Prof. Christian Brun-Buisson
Institut National de la Santé et de la Recherche Médicale (INSERM)
INSERM U657 & Université Paris
Val de Marne (UVPM)
Hôpital Henri Mondor,
Assistance Publique-Hopitaux de Paris
51, Ave Mai De Lattre de Tassigny
Créteil, France
Tel. +33 1 4981 2391
Fax +33 1 4207 9943
E-mail: christian.brun-buisson@hmn.aphp.fr

Partners

Dr Didier Guillemot and Dr Patrick Trieu-Cuot
Institut Pasteur
Paris, France

Prof. Herman Goossens
University of Antwerp
Antwerp, Belgium

Prof. Waleria Hryniewicz
National Medicines Institute
Warsaw, Poland

Prof. Jordi Vila
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain

Prof. Marc Bonten and Dr Robert Veen
University Medical Center Utrecht
Utrecht, Netherlands

Dr Stephan Harbarth
University of Geneva Hospitals
Geneva, Switzerland

Dr Yehuda Carmeli
Tel Aviv Sourasky Medical Center
Tel Aviv, Israel

Dr Ben Cooper
Health Protection Agency
London, England, UK

Prof. Isabelle Durand-Zaleski
Université Paris Val de Marne
Créteil, France

Prof. Eric Fleury
Institut National de la Recherche en Informatique et Automatique (INRIA)
Villeurbanne, France

Dr Jérôme Weinbach and Dr Delphine Sondaz
Inserm Transfert
Paris, France

Dr Camille Cyncynatus
AbAg SA
Chilly-Mazarin, France

Dr Gerd Heinz
BAG GmbH
Lich, Germany

Dr Paul Wallace
British Biocell International Ltd (BBI)
Cardiff, England, UK

Dr Guido Krupp
AmpTec GmbH
Hamburg, Germany

Dr Dirk Fischer
Array-on GmbH
Gatersleben, Germany
IDENTIFYING NOVEL CLASSES OF HIV INHIBITORS

BACKGROUND
The objective of the NewHiv Targets project was to design novel screening assays allowing the identification of novel classes of HIV inhibitors.

Problem:
Despite the success of highly active antiretrovirals to control HIV replication in infected patients, at least in countries that can afford these treatments, new drugs are still needed. Widely used drugs mainly target two viral enzymes: reverse transcriptase and protease. However, about 20% of patients cannot tolerate antiviral cocktails in the short term, and long-term treatments are often associated with severe side effects. There is also increasing concern about the spread of drug-resistant HIV variants.

AIMS
The project partners aimed to identify lead compounds that could impact HIV through new mechanisms. Academic experts in virology and cellular biology joined forces with antiviral-research specialists and pharmacologists to perform anti-HIV high-throughput screening (HTS) assays. The partners defined one unexploited viral target, for which there are no available inhibitors: the critical step of viral release from the cell. This novel target was chosen because important recent discoveries have shed new light into the molecular mechanisms of virus budding, thereby rendering this critical step in the HIV lifecycle a feasible target for drug development.

EXPECTED AND OBTAINED RESULTS
The NewHiv Targets partners designed one cell-based assay that did not require the use of infectious virus, allowing for the screening of chemicals libraries. As proof of concept, they screened 2 000 compounds, and were able to identify one interesting hit. In secondary analysis with infectious HIV, this compound displayed very little antiviral activity.

The next aim was to extend the screening to a higher number of compounds (2 libraries of 20 000 and 4 000 compounds. The partners sought to further document the activity of the first hit. More fundamentally, they are studying the mechanisms of HIV-1 assembly and transfer through cell-to-cell contact.

Potential applications:

Project Coordinator
Dr. Olivier Schwartz
Institut Pasteur
25-28 rue du Dr Roux
75015 Paris, France
Tel. +33 145688353
E-mail: Schwartz@pasteur.fr

Partners
Dr. Kalle Saksela
University of Tampere
Tampere, Finland

Dr. Barbara Mueller
University Clinic of Heidelberg
Heidelberg, Germany

Dr. Maurizio Federico
Laboratory of Virology
Istituto Superiore di Sanita
Rome, Italy

Prof. Marcel Hibert
Université Louis Pasteur
Strasbourg, France
BACKGROUND
Tuberculosis (TB) is one of the most deadly infectious diseases in the world. The high rates of patient non-compliance lead not only to more than 3 million deaths per year, but also to the creation of chronic, infectious, drug-resistant TB strains, against which almost all existing antibiotics are ineffective or prohibitively toxic. The outcome of the NEWTBDRUGS project would lead to new drugs that would shorten the duration of TB treatment, improve latent TB infection treatment and be effective against multidrug-resistant TB (MDR-TB).

Problem:
The key problem in TB treatment is the six- to eight-month-long treatment duration, which often leads to non-compliance. Patients frequently get better quickly on an intense course of antibiotic chemotherapy and therefore stop taking the drugs before the infection is eliminated. MDR-TB has become a major health problem, not only in developing countries but also in neighbouring countries of the European Community. In the face of the HIV/AIDS epidemic, new ‘sterilising’ drugs with shorter regimens are needed that can significantly increase patient compliance, substantially reduce the rate of emergence of antibiotic resistance, materially decrease the costs of treatment and prevent progression from latent infection to active disease. New strategies are urgently needed for combating the problems of TB treatment.

AIMS
The NEWTBDRUGS consortium aimed to apply their integrated strategy of drug development by structural analysis of novel targets, virtual and real screening-based identification of leads, new organic synthetic chemistry and functional evaluation of best hits in in vivo animal models.

EXPECTED AND OBTAINED RESULTS
This study made a number of scientific breakthroughs including:

- solution of the 3D structure of several persistence-related drug targets of M. tuberculosis;
- development of new assays for screening drugs that kill persistent M. tuberculosis.

Potential applications:
At least one of the leads identified and developed in this project will enter clinical trials in humans for treating persistent TB, in cooperation with pharmaceutical companies active in manufacturing the existing TB drugs.

Project Coordinator
Dr. Mahavir Singh
LIONEX Diagnostics and Therapeutics GmbH
Inhoffenstrasse 7
38124 Braunschweig, Germany
Tel. +49 5312601266
Fax +49 5312601159
E-mail: info@lionex.de

Partners
A.F.R.M. Coates
St George’s Hospital Medical School
London, England, UK

Prof. Gunter Schneider
Karolinska Institutet
Stockholm, Sweden

Prof. Marcus Kalesse
University of Hanover
Hanover, Germany

Prof. Paul Driscoll
University College London
London, England, UK

Dr. Hans-Jürgen Hecht
GBF – German National Centre for Biotechnology
Braunschweig, Germany

Project number: LSHP-CT-2005-018729 ■ EC contribution: €1 800 000 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 September 2005
BACKGROUND

New Medicines for Tuberculosis (NM4TB) aims to successfully develop new drugs for the treatment of tuberculosis (TB) through an integrated approach implemented by a team that combines some of Europe’s leading academic TB researchers with a major pharmaceutical company and three small to medium-sized enterprises (SMEs), all with a strong commitment to discovering new anti-infective agents. NM4TB has a comprehensive portfolio of potential and validated targets, plus several novel, proprietary anti-TB agents in its drug development pipeline. Among the validated targets are several enzymes involved in highly druggable areas such as cell wall biogenesis, nucleic acid synthesis and central metabolic pathways for which assays amenable to high-throughput screening are available. Intensive efforts will focus on rapidly emerging targets that impact upon two as yet untouched areas of the physiology of M. tuberculosis signal transduction pathways and persistence.

Problem:

TB is one of the oldest diseases known to man and has infected one third of the world’s population. As a result, someone dies from the disease every 15 seconds and 30 million more people will lose their lives to TB in the next decade. Although directly observed short-course chemotherapy is available to treat the disease, this treatment is old, slow and inefficient by the current standards of the pharmaceutical industry. Here, the project partners will employ the most innovative approaches to identify and validate targets for new drugs, and implement the screening and medicinal chemistry processes required to identify lead compounds for the generation of candidate drugs.

AIMS

NM4TB aims to successfully develop new drugs for the treatment of TB with the following desired properties:

- high potency to reduce treatment duration;
- activity against persistent bacilli;
- inhibition of new target classes;
- activity against multidrug resistant TB;
- specificity for Mycobacterium tuberculosis.

EXPECTED RESULTS

The NM4TB consortium anticipates the following results:

- development and implementation of novel enabling technologies required for drug development.
- target validation in well-established, ‘druggable’ areas such as the central metabolism, cell wall and nucleic acid synthesis;
- generation of the structural information for as many targets as possible, acting iteratively in the drug development process.
- assay development and screening of deep chemical libraries encompassing ‘Active’ to ‘Hit’, ‘Hit’ to ‘Lead’
progression; ‘lead’ optimisation activities that give rise to candidate drugs.

Potential applications:
The proposed research will result in:

- the development of new technologies and assays for TB drug development;
- the discovery of new classes of lead compounds for fighting TB;
- the lead optimisation and progression to candidate drug status.

Project Coordinator

Prof. Stewart T. Cole
Unité de Génétique Moléculaire Bactérienne
Institut Pasteur
25-28, rue du Docteur Roux
75724 Paris, France
Tel. +33 145688446
Fax +33 140613583
E-mail: stcole@pasteur.fr

Partners

Prof. Alwyn T. Jones
Uppsala University
Uppsala, Sweden

Dr Tanjore Balganesh
AstraZeneca R & D
Bangalore, India

Prof. Tanya Parish
Barts and the London Queen Mary’s School of Medicine and Dentistry
London, England, UK

Prof. Kai Johnsson
Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

Prof. Giovanna Riccardi
Università degli studi di Pavia
Pavia, Italy

Dr Ida Rosenkrands
Statens Seruminstitut, Department of Infectious Disease Immunology
Copenhagen S, Denmark

Dr Ute Möllmann
Hans-Knöll-Institut für Naturstoff-Forschung
Jena, Germany

Prof. Andrew Munro
University of Manchester
Manchester, England, UK

Dr Katarina Mikusova
Comenius University
Bratislava, Slovakia

Prof. Michael Arand
University of Zurich
Zurich, Switzerland

Prof. Kéri György
Vichem Chemie Research Ltd
Budapest, Hungary

Dr Daniela Jabes
NeED Pharmaceuticals
Cassina Rizzardi, Como, Italy

Prof. Philip Butcher
St. George’s Hospital Medical School
London, England, UK

Dr Mamadou Daffé
Institut de Pharmacologie et de Biologie Structurale
Toulouse, France
TAILORING OF NOVEL PEPTIDE COATINGS AND THERAPEUTICS DERIVED FROM A NEWLY IDENTIFIED COMPONENT OF THE HUMAN INNATE IMMUNITY AGAINST RESISTANT INFECTIONS

http://npari.org/

BACKGROUND
The apoE and apoB human proteins have recently been linked to the innate immune system. Peptide sequences derived from these proteins have been shown to have varied anti-infective properties that can be modified by small changes to the core peptide sequence. Thus, the apoE and apoB peptides exhibit antibacterial, antifungal and antiviral properties, and present an excellent opportunity to develop novel therapeutics and medical device coatings.

Problem:
Despite major advances made in the development of numerous classes of antimicrobial agents to treat serious life threatening infections, microorganisms are becoming increasingly resistant to the agents developed by man.

AIMS
The aims of the NPARI consortium were to fully exploit the exciting properties of this novel peptide class. Specifically, the consortium aimed to target peptide sequences into two areas: coating agents for medical devices and therapeutics agents.

EXPECTED AND OBTAINED RESULTS
1. The design of a small peptide library tailored to the proposed exploitable application of the project.
2. Determination of the activity spectrum of active peptides and ranking of peptide variants.
3. Optimisation and toxicity profiling of active peptides.
4. Efficacy profiles against a panel of resistant organisms growing as biofilms.
5. Pharmacological and efficacy evaluation of peptides in a range of models.

Potential applications:
The exploitation of this new class of antimicrobial peptides offers the potential to develop new therapeutics against a range of the most resistant and problematic organisms facing European infectious disease clinicians.

SME Participation
A vital component to the project is the participation of several small and medium-sized enterprises (SMEs) who have expertise in the fields of drug development. This, combined with the academic expertise of the remaining partners, allowed for an experienced and focused consortium.

Project Coordinator
Dr Mike Birch
F2G Ltd
Po Box 1, Lankro Way, Eccles
Manchester, M30 OBH
England, UK
Tel. +44 161 785 1277
Fax +44 161 785 1273
E-mail: mikebirch@f2g.com

Partners
Dr Christophe d’Enfert and Dr Jean-Marc Ghigo
Institut Pasteur
Paris, France

Dr Chiara Bigogno
NiKem Research s.r.l.
Baranzate (Mi), Italy

Prof. Niels Høiby
University Hospital of Copenhagen
Copenhagen Ø, Denmark.

Dr Curtis Dobson
Ai2 Ltd
Manchester, England, UK
VETERINARY PHASE THERAPIES AS ALTERNATIVES TO ANTIBIOTICS IN POULTRY PRODUCTION

BACKGROUND
Phages are very specific in killing a limited range of bacterial strains, cf. antibiotics, and do not cause infections of animals or plants. Studies have shown phages to be effective in removing contamination from poultry carcasses, and in killing pathogens in the intestinal tract of live poultry and in eggs.

The Phagevet-P project focused on trials in live poultry to evaluate the importance of safety and quality factors including phage choice and production, and modeling of the infection and curing process. Alternative strategies were also considered for potential constraints related to development of phage-resistant strains of pathogens, mass application causing environmental concerns, and destruction of phages by stomach acidity following oral administration.

Problem:
Antibiotics are currently being phased out of food animal production but alternative methods are needed to combat bacterial diseases in food animals, and to control transmission of pathogens responsible for food-borne illnesses to humans.

AIMS
Phagevet-P aimed to evaluate the potential use of phages as alternatives to antibiotics in poultry production and to characterise the efficacy of phages from farm-to-fork.

The first scientific objective is to establish that in live poultry, treatment with specific phages can reduce or eliminate the occurrence of the two pathogens responsible for the majority of human food-borne illness, namely Salmonella and Campylobacter spp.

The second major objective is to establish that this protection of the live birds from infection, provides poultry products for human consumption that have greatly reduced contamination levels with these two pathogens.

OBTAINED RESULTS
The lytic spectra of the phages were determined on a group of more than 200 clinical and food isolates of different serotypes of both pathogens. The genomes of some of the Salmonella phages were examined and shown not to carry any Salmonella genes, indicating a very low likelihood of carriage and potential transfer of pathogenic traits. In vivo trials showed that the phages selected and characterised offer a good potential to control Salmonella and Campylobacter in vivo, but its efficacy is time dependent.

Potential applications:
Reduction or elimination of the widespread use of antibiotics in poultry feed and replacement by prophylactic application of phages in large-scale poultry rearing.
Project Coordinator

Dr Joana Azeredo
Universidade do Minho
Departamento de Engenharia Biológica
Braga, Portugal
E-mail: jazeredo@deb.uminho.pt

Partners

Dr Evangelia Komitopoulou
Leatherhead Food International Ltd
Leatherhead
Surrey, England, UK

Dr Paul Gibbs
Universidade Católica Portuguesa
Porto, Portugal

Dr Ben Gannon
University of Bristol
Langford
Bristol, England, UK

Dr Jaime Fabregas
Universidad de Santiago de Compostela
Santiago de Compostela, Spain

Dr Victor N. Krylov
State Institute for Genetics and Selection of Industrial Microorganisms
Moscow, Russia
BACKGROUND
The advances of the PNEUMOPEP project were new targets, identification of completely new lead compounds, a new approach to adjunctive therapy and a new method of delivery of the compounds.

Streptococcus pneumoniae (*S. pneumoniae*) imposes a huge disease burden on humans. There is a pandemic of multidrug resistant pneumococci and treatment is compromised. Even if antibiotics kill the bacterium, they can fail to prevent death from neurological damage after meningitis, due to the acute toxemia.

The first event in toxemia is the release of pro-inflammatory or toxic pneumococcal products, probably exacerbated by antibiotics. The pneumococcal toxin pneumolysin fulfils both definitions: it is directly toxic to mammalian cells and it stimulates the release of inflammatory mediators from host cells.

For this reason and because the toxin is essential for the survival of the bacterium in vivo, pneumolysin was a target for this project. A second target was the cell surface proteinases involved in adhesion and invasion, which are important virulence factors for the pneumococcus. These proteins represented new targets and their validation as targets was completed.

The new treatment will be based on binding peptides isolated from a series of large phage display libraries or based on small molecules identified by high throughput screening.

Problem:
S. pneumoniae imposes a huge disease burden on humans: it is the number one cause of pneumonia and it is the second most common cause of meningitis.

AIMS
PNEUMOPEP aimed to identify small molecules and peptides that inhibit the activity of pneumolysin on pneumococcal surface proteins, *in vitro* and *in vivo*.

OBTAINED RESULTS
The consortium obtained lead compounds for development of pneumococcal drugs.

Potential applications:
The results of the project would contribute to the treatment of pneumococcal diseases.

Project Coordinator
Prof. Peter Andrew
University of Leicester
Department of Infection, Immunity and Inflammation
Maurice Shock Building
University Road
Leicester, LE1 9HN, England, UK
Tel. +44 1162522941
Fax +44 1162525030
E-mail: pwa@leicester.ac.uk

Partners
Dr Marco Oggioni
Università di Siena
Siena, Italy

Prof. Gio Teti
University of Messina
Messina, Italy

Dr Inder Gill
Archimedes Development Ltd
Nottingham, England, UK

Dr Thierry Jarosz
Cegedim Strategic Data
Boulogne-Billancourt, France
BACKGROUND

PREVIS provided an integrated platform to study important and unexplored aspects of pneumococcal disease/pathogenesis, epidemiology/transmission and molecular mechanisms for resistance development and even if the program now has come to an end the network will continue to study invasive disease potential in a collected study from all the countries as well as pneumococcal meningitis in Europe. Hence the project has created novel interactions and collaborations that will continue even after the funding has ceased from the EU commission.

Problem:

Streptococcus pneumoniae remains among the most important causes of life-threatening community-acquired diseases such as pneumonia, septicemia and meningitis, particularly in high risk groups such as young children, HIV+ individuals and the aged. The annual global mortality rate is over one million. Streptococcus pneumoniae is also the major cause of upper respiratory tract infections (URTI) such as otitis media, and URTIs are one of the most common reasons for visits to doctor’s offices and for antibiotic prescriptions. As many as 60% of healthy children attending day-care centers have been found to be colonized with pneumococci in the nasopharynx, which therefore appear to be a main reservoir for this pathogen. Drug resistant clones (DRPn) emerging from this major ecological reservoir are widely spread in Europe, threatening effective antibiotic therapy. For decades, penicillin has been the drug of choice for treating pneumococcal infections, but increasing levels of penicillin resistance, up to 50% in some areas, has resulted in the use of alternative antibiotics.

Properties affecting virulence of the organism, such as adherence, invasion and transmission of the bacteria, and human host factors have to be investigated and correlated to the development of resistance and to the acquisition of resistance markers. Also, antibiotic consumption may be an important factor affecting transmission and selection for resistance determinants. A better knowledge of molecular mechanisms involved in resistance and of host-pathogen interactions affecting pneumococcal infections would lead to improved intervention, prevention and treatment strategies of these common community acquired infections.

AIMS

The objectives were to examine:

- survival and growth in the antibiotic rich milieu making it essential that bacteria acquire genetic traits of resistance;
- successful drug-resistant strains to compete with other members of the species for colonisation, geographic spread and disease in the human host.
OBTAINED RESULTS
Results of PREVIS include:

- non-typeable pneumococci (NTPn) have diverse genetic backgrounds;
- a novel bacterial factor — pilus — is important for colonisation, virulence and the inflammatory response in mice;
- TLR(toll-like receptor)9 deficient macrophages are defective in pneumococcal phagocytosis and killing.

Project Coordinator
Prof. Birgitta Henriques Normark
Swedish Institute for Infectious Disease Control
171 82 Solna, Sweden
Tel. +46 84572300
Fax +46 8302566
E-mail: Birgitta.Henriques@smi.ki.se

Partners
Dr. Katarzyna Grabowska
Swedish Institute for Infectious Disease Control
Solna, Sweden

Prof. Hermínia de Lencastre
Instituto de Tecnologia Química e Biológica (ITQB)
Oeiras, Portugal

Prof. Brian Spratt
Imperial College
London, England, UK

Prof. Karl G. Kristinsson and Prof. Ingileif Jonsdottir
Landspitali University Hospital
Reykjavik, Iceland

Dr José Melo Cristino
Instituto de Medicina Molecular
Lisbon, Portugal

Prof. Staffan Normark
Karolinska Institutet
Stockholm, Sweden

Prof. Regine Hakenbeck
University of Kaiserslautern
Kaiserslautern, Germany

Prof. Hans Wolf-Watz
Innate Pharmaceuticals
Umeå, Sweden

Dr Thorolfur Gudnason
National Vaccination Program - Directorate of Health
Reykjavik, Iceland

Prof. Jonas Almeida
Instituto de Biologia Experimental e Tecnológica
Lisbon, Portugal

Dr Pavla Urbaskova
National Institute Public Health
Prague, Czech Republic
BACKGROUND
Malaria remains one of the most devastating diseases of the developing world, causing more than 1 million deaths and 300 million to 500 million clinical cases each year. Although four Plasmodium species infect humans (P. falciparum (P. f.), P. vivax, P. ovale and P. malariae), most deaths are caused by the severe complications of P. f. malaria. Malaria-related morbidity and mortality are increasing mainly as a consequence of drug resistance as observed with the two most widely used antimalarial drugs: chloroquine and sulfadoxine-pyrimethamine. To combat malaria, new drugs are urgently needed.

The READ-UP project targeted the identification of a new drug candidate for malaria. Starting from one series with antimalarial activity, the project would realise hit-to-lead optimisation through molecular modelling, testing of new chemical entities in vitro and in vivo and pharmacological, pharmacokinetics, toxicological and mechanisms studies.

AIMS
Following the drug discovery process until the pilot-scale production, the objective was to propose one antimalarial drug candidate with two back-ups for further pre-clinical studies.

EXPECTED AND OBTAINED RESULTS
An initial series of new stable compounds was developed. In a first synthetic series, several compounds presented anti-plasmodial properties and preliminary in vitro and in vivo studies led to the identification of one hit. Based on the excellent in vitro and in vivo results already obtained, READ-UP will develop new structural analogues using the same innovative approach. The in vitro and in vivo results obtained will be further improved by the application of optimisation techniques, through the ‘Drug Discovery’ process that the READ-UP partners will implement. Moreover, the READ-UP innovative strategy should allow designing chemically stable compounds, which may have a longer duration of action in vivo.

Potential applications:
Application of READ-UP scientific breakthroughs into approved new medicines.

Project Coordinator
Dr. Serge Petit
Idéalp’ Pharma/IDEALP
Bât. CEI – 66
Bd Niels Bohr - BP 2132
69603 Villeurbanne, France
Tel. +33 437488800
Fax +33 478935653

Partners
Prof. Françoise Nepveu
Université Paul Sabatier (UPS)
Toulouse, France

Prof. Paolo Arese
Università di Torino
Turin, Italy

Dr. Livia Vivas
London University
London, England, UK

Dr. Leonardo Basco
Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC)
Yaoundé, Cameroon

Dr. Laurence Touchard-Nicod
ACIES
Lyon, France
NOVEL OPPORTUNITIES TO DEVELOP VACCINES TO CONTROL ANTIBIOTIC RESISTANT BACTERIA: FROM THE TRIALS BACK TO THE LABORATORY

BACKGROUND
Antibiotic resistant bacteria are rapidly spreading worldwide, making it increasingly difficult to treat infections in large communities as well as creating a major public health problem. Vaccination is proposed as one of the best tools to stop the spread and development of antimicrobial resistant microorganisms. However, the analysis of the effects of using conjugated vaccines against Streptococcus pneumoniae, Haemophilus influenzae b and Neisseria meningitidis has shown some paradoxes and some interesting aspects that led to a re-thinking of how immunity to polysaccharide is elicited following vaccination and how memory is acquired.

The workshop proposed by REBAVAC — involving some of the most important experts in vaccination, immunology and bacterial resistance — represented a very important opportunity in Europe to discuss the implication of the results of ongoing research on the use and development of vaccines to fight antibiotic resistant bacteria.

Problem:
Staphylococci and vancomycin-resistant Enterococci are causing nosocomial infections, while other pathogens like pneumococcus, effectively treated in the past with penicillin, are now resistant to a broad spectrum of antibiotics.

AIMS
The overall aim of REBAVAC was to organise a European workshop in which worldwide leading experts in vaccine research and immunology met with healthcare providers, industry representatives and public health experts to discuss critical issues.

EXPECTED AND OBTAINED RESULTS
The workshop provided European researchers with the newest trends and directions of research in the area of vaccines to antibiotic-resistant bacteria. It was a good occasion to envisage the exploitation of new vaccination strategies.

The outcomes of the workshop are expected to compel the European research and industry to move towards more efficient/efficacious vaccines and vaccination strategies, and to find novel immunisation ways to optimise the use and formulation of currently available vaccines to fight antibiotic resistance.

Potential applications:
The impact of the scientific workshop and of the correlated activities planned by REBAVAC is expected to be very strong in the field of developing new strategies against antibacterial resistant infections.

The involvement of the European industry and research groups in the vaccine field should fuel the design of novel vaccination strategies, leading to improved control of infectious diseases and stronger well-being for everyone.

Project Coordinator
Dr Aldo Tagliabue
CEO ALTA Srl
Via Fiorentina 149
53100 Siena, Italy
Tel. +39 057750518
Fax +39 0577593815
E-mail: tagliabue@altaweb.eu
BACKGROUND
The EU banned growth-promoting antibiotics in 2006, and livestock producers need alternative ways of obtaining similar production benefits to maintain profitability and competitiveness against overseas producers. Improving the health and safety of animal products reaching the consumer, including those resulting from organic farming, is also important.

REPLACE is examining plants, plant extracts and other natural materials as safe alternatives to feed antimicrobials. The project will link fragmented research carried out with different animal species across Europe and provide a platform for the rational production of a new generation of natural feed additives.

Problem:
The main fear was that antibiotic resistance would arise from the use of antibiotics in animals, and in turn possibly transmit this resistance to human pathogens. Anthelmintics are also becoming increasingly problematic in preventing parasitic infections, and safe alternatives are needed. Aquaculture is a growing sector within the EU and antimicrobials are common in combating the problems associated with intensification. Finding a growth promoter of natural origin will have benefits for environmental safety and awareness as well as the meeting the demand for a healthier food chain. Ways must also be found to improve the healthiness and safety of animal products reaching the consumer, including those from organic farming.

AIMS
The overall aim is to derive safe alternatives to antimicrobials, based on plant extracts and other natural materials.

EXPECTED RESULTS
The expected outcome will be a catalogue of plant extracts that can be used as potential replacements for antibiotics in the animal feed industry. The major deliverables are to find natural materials that suppress E. coli, Salmonella and C. perfringens infections, suppress parasites and their egg production in ruminants.

Potential applications:
The generated knowledge will allow the project results to achieve market penetration for the new or modified products, and provide safe alternatives to former feed additives.

Project Coordinator
Prof. R. John Wallace
Rowett Research Institute
Gut Health Division
Aberdeen, AB21 9SB, Scotland, UK
Telephone: +44 (0)1224 716656
email: John.Wallace@rowett.ac.uk
Or John.Wallace@rri.sari.ac.uk
Partners

Prof. Klaus Becker
University of Hohenheim
Stuttgart, Germany

Dr Secundino Lopez
Universidad de Leon
Leon, Spain

Prof. Ian Givens
University of Reading
Reading, England, UK

Dr Frank Jackson
Moredun Research Institute
Edinburgh, Scotland, UK

Dr Bent Borg Jensen
Aarhus University
Tjele, Denmark

Dr Alojz Bomba
Pavol Jozef Šafárik University in Košice
Košice, Slovakia

Dr Magne Kaldhusdal
National Veterinary Institute
Oslo, Norway

Prof. Andrzej Rutkowski
August Cieszowski Agricultural University
Poznan, Poland

Dr Richard Murphy
Alltech Ireland Ltd
Dunboyne, Co. Meath, Ireland

Dr Marco Frehner
DSM Crina
Gland, Switzerland
EVALUATING PHYSIOLOGICAL AND ENVIRONMENTAL CONSEQUENCES OF USING ORGANIC WASTES AFTER TECHNOLOGICAL PROCESSING IN DIETS FOR LIVESTOCK AND HUMANS

BACKGROUND
The SAFEWASTES project targeted the development of innovative biotechnology for processing and purifying organic materials from the food and plant-based extracts industries.

Problem:
The industrial processing of fruits and vegetables as well as the extraction of herbs produces millions of tonnes of organic waste, by-products and residues each year. These waste materials are costly and contribute to environmental problems.

AIMS
SAFEWASTES aimed to find innovative ways for generating novel, high added value products, and to demonstrate that there is potential in recycling their organic by-products for the purpose of producing new products acceptable to all stakeholders.

OBTAINED RESULTS
By-products of the plant processing industry were (re-)extracted before and after enzymatic fermentation and investigated phytochemically, in vitro and partly also in vivo in farm animals. A remarkable antioxidant, anti-inflammatory and anti-adhesive (antimicrobial) activity was found in vitro and in vivo.

Potential applications:
The results of SAFEWASTES will help food manufacturers use scientific approaches to meet consumer demands for safer, higher-quality food. The project will also boost European competitiveness. Improved recycling of organic wastes should reduce the load on landfills and cut methane production by composting. SAFEWASTES improved cooperation between industry and academia, generating new employment in biotechnological processing.

Project Coordinator
Prof. Dr Chlodwig Franz
University of Veterinary Medicine
Institute for Applied Botany and Pharmacognosy
Veterinärplatz 1
1210 Vienna, Austria
Tel. + 43 (1) 25077 - 3100
Fax + 43 (1) 25077 - 3190
E-mail: Chlodwig.Franz@vu-wien.ac.at

Partners
Prof. Dr. Rudolf Bauer
Karl-Franzens-Universität Graz
Graz, Austria

Dr Age Jongbloed
Wageningen University and Research Centre
Lelystad, Netherlands

Prof. Dr Reinhold Carle
University of Hohenheim
Stuttgart, Germany

Prof. Spyridon Kyriakis
University of Thessaloniki
Thessalonica, Greece

Prof. Bruno Stefanon
University of Udine
Udine, Italy

Prof. Doriana Tedesco
Università degli Studi di Milano
米兰, Italy

Dr Joachim Erler
Bionorica AG
Neumarkt, Germany

Dr Geert Bruggeman
Nutrition Science NV
Drongen, Belgium

Dr Gerd Schatzmayr
Biomin GmbH
Herzogenburg, Austria

Prof. Wieslaw Oleszek
Institute of Soil Science and Plant Cultivation
Puławy, Poland

Dr. Andreas Moser
RTD Services
Vienna, Austria
NOVEL THERAPEUTIC AND PROPHYLACTIC STRATEGIES TO CONTROL MUCOSAL INFECTIONS BY SOUTH AMERICAN BACTERIAL STRAINS

BACKGROUND
Enteric and respiratory diseases remain a major cause of mortality during neonate life and childhood within developing countries. The SavinMucoPath project is focusing on bacteria that enter through or colonise enteric and respiratory mucosa, i.e. *Streptococcus pneumoniae*, *Salmonella enterica* serovar *Enteritidis*, and *Bordetella pertussis*. The selected bacterial pathogens are associated with important rates of morbidity and mortality in South America, especially in young children and those in the low socioeconomic bracket. Moreover, the strains and serotypes that cause infections are unique to the developing countries in this area and consequently, basic research and development of therapies and vaccines tailored to these local strains have been deserted by the European and North American scientific communities.

Problem:
Mucosal tissues represent the major sites of infection by pathogenic microbes and the study of mucosal pathogens is therefore relevant for combating infection and reinforcing immunity. Thus, enteric and respiratory diseases remain a leading cause of mortality worldwide. This proposal focus on mucosal bacterial pathogens that are of main importance for public health in Latin America. The strategic objective is to confront the emergency caused by specific strains of *Streptococcus pneumoniae*, *Salmonella* spp., and *Bordetella pertussis* — through the improvement of knowledge on molecular pathogenesis and the development of novel therapeutic and prophylactic interventions.

AIMS
The main objectives are to fuel understanding of the host-pathogen interaction and to develop novel mucosa-specific therapeutics and vaccines to control bacterial infections. Our strategies are based on the exploitation of innate defence mechanisms triggered by pathogen conserved molecules and pathogen-specific factors.

EXPECTED RESULTS
The consortium expects to identify molecules from the selected bacteria that activate specifically protective mucosal innate immunity so as to block infections at the port of entry of bacteria and stimulate antigen-specific responses through mucosal cells.

We will develop cell and rodent models for high throughput screening of pathogen components to ultimately bring candidate experimental immuno-interventions against enteric and respiratory infections to clinical trials within the next FP

Potential applications:
SavinMucoPath should contribute to the development of appropriate treatment of the corresponding diseases, especially during childhood. The project will have a major impact in the field of development of mucosal immuno-stimulators — adjuvants that specifically control mucosal infections.

Project number: INCO-CT-2006-032266 ■ EC contribution: €1 699 908 ■ Duration: 36 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 October 2006
This effort may have a “transdisease” impact on anti-microbial treatments and vaccine strategies for different infectious diseases. If successful, the screened molecules may have an impact on the overall existing vaccines and antibiotherapy. A successful outcome of SavinMucoPath will substantially contribute to the further development of innovative and effective projects against any neglected mucosal infections.

Project Coordinator

Dr Jean Claude Sirard
INSERM, U801
Institut Pasteur de Lille
Team of antimicrobial mucosal immunity
1 rue du Pr. Calmette
59021 Lille, France
Tel. +33 320871076
E-mail: jean-claude.sirard@ibl.fr

Partners

Dr Martin Rumbo and Dr Daniela Hozbor
Universidad Nacional de La Plata
La Plata, Argentina

Prof. Tracy Hussell
Imperial College
London, England, UK

Prof. Wolf-Dietrich Hardt
Eidgenossische Technische Hochschule Zurich
Zurich, Switzerland

Prof. José Alejandro Chabalgoity
Universidad de la Republica Oriental del Uruguay
Montevideo, Uruguay

Dr Alexis Kalergis
Pontificia Universidad Catolica de Chile
Santiago, Chile

Dr Augusto Pich Otero
Instituto Biológico Argentino (BIOL)
Buenos Aires, Argentina
TARGETING MALARIA TRANSMISSION THROUGH INTERFERENCE WITH SIGNALLING IN PLASMODIUM FALCIPARUM GAMETOCYTOGENESIS

BACKGROUND
Inhibiting the transmission of the malaria parasite from infected humans to the mosquito vector would be of considerable interest in the context of malaria control, especially for preventing the dissemination of drug-resistant genotypes. Since only sexual forms of the parasite (the gametocytes) are infective to the mosquito, blocking gametocytogenesis would prevent transmission. But the molecular control of gametocytogenesis is not understood. Our laboratories have independently brought significant contributions to the characterisation of (i) components of signalling pathways, some of which are likely to be involved in parasite sexual differentiation, and (ii) proteins expressed at the onset of gametocytogenesis, such as Pfpg27 and Pfps16. The SIGMAL project aimed to generate an integrated picture of the early events of sexual development at the molecular level.

Problem:
Malaria is a major public health problem in most of the developing world, and the morbidity and mortality burden inflicted by this disease on many developing countries hinders socioeconomic development. The emergence and spread of malaria parasites that are resistant to existing anti-malarials also exacerbates this problem. A way to control the spread of drug-resistant parasites would be to prevent transmission of the parasite from infected humans to the mosquito vector. To infect a mosquito, the parasite must first develop into specialised sexual forms, the male and female gametocytes, while in the bloodstream of the human host. Although proteins that are specifically expressed at the onset of gametocyte formation have been characterised, the molecular mechanisms controlling this phenomenon remain to be elucidated. It is likely that intracellular signalling, and particularly the phosphorylation of proteins, is involved in gametocyte differentiation and further stages of the sexual cycle. Indeed, reverse genetics data generated within the SIGMAL consortium have already identified protein kinases (the enzymes responsible for protein phosphorylation) and other signalling molecules as essential for Plasmodium sexual development. Interference with these enzymes may provide lead compounds for the development of transmission-blocking drugs.

AIMS
SIGMAL aimed to raise understanding of gametocyte formation, in particular by characterising the signalling pathways involved, and to identify inhibitors of protein kinases that may inhibit sexual development of the parasite, and thus interfere with malaria transmission.

OBTAINED RESULTS
The SIGMAL partners obtained:

- improved knowledge of the basic biology of malaria parasites, particularly with respect to cell differentiation;
- validation by reverse genetics of novel molecular targets for transmission-blocking intervention;

Project number: LSHP-CT-2004-012174 | EC contribution: €969,000 | Duration: 27 months | Type: Specific Targeted Research Project | Starting date: 1 March 2005
identification of protein kinase in cycle of malaria parasites.

Potential applications:
SiGMAL will provide a list of validated targets for transmission-blocking drugs in the context of anti-malarial chemotherapy.

Project Coordinator
Prof. Christian Doerig
INSERM U609
Wellcome Centre for Molecular Parasitology
University of Glasgow
Biomedical Research Centre
120 University Place
Glasgow, G12 8TA, Scotland, UK
Tel. +44 1413306201
Fax +44 1413305422
E-mail: cdoer001@udcf.gla.ac.uk

Partners
Dr Pietro Alano
Istituto Superiore di Sanita
Rome, Italy

Dr David Baker
London School of Hygiene and Tropical Medicine
London, England, UK

Dr Laurent Meijer
Station Biologique
Roscoff, France

Dr Amit Sharma
International Centre for Genetic Engineering and Biotechnology
New Delhi, India

Dr Francis Mulaa
University of Nairobi
Nairobi, Kenya
BACKGROUND

Molecular diagnostics of microbial pathogens is an integral part of modern medicine. The growing need for direct genotyping and/or the screening of the transcriptome calls for the development of alternative technologies. The SLIC consortium planned to develop a cost-effective platform for the identification bacterial species based on the SLIC-Nanobiosystem.

Using tmRNA transcripts of the bacterial ssrA gene, the project partners were able to detect, quantify and identify bacterial species in a single homogeneous assay format. The SLIC-Nanobiosystem consists of a self-assembled lipid bilayer membrane that integrates a synthetic ligand-gated ion channel (SLIC). The SLIC comprises a capture molecule that can specifically bind a given analyte, a process that is monitored via electrical impedance spectroscopy. With this system, the effect from even a few channels can be resolved, thus providing an ultra-sensitive, highly stable and versatile biosensor platform.

The consortium planned to employ transcripts (tmRNA) of the ssrA gene to identify bacterial species present in clinical samples. These transcripts occur in high abundance and contain a core sequence that is species specific, a feature that was used to identify infectious disease pathogens.

AIMS

SLIC targeted the development of a cost-effective platform for the identification of bacterial species based on the SLIC-Nanobiosystem.

EXPECTED AND OBTAINED RESULTS

The identification of the different bacterial tmRNA transcripts would be achieved by displaying a library of nucleic acid capture probes on the SLIC. This will enable species identification and discrimination between one or more species present in the sample if mixed species infection is present.

Since the detection equipment will be based on electronics, the realisation of miniaturised/compact and cost-effective instruments will be possible.

Potential applications:
The consortium’s approach will lay the foundation for a new generation of multiparametric molecular testing systems that will open novel opportunities within the area of point-of-care applications in the clinical diagnostics market.

Project Coordinator

Dr Solomzi Makohliso
Ayanda Biosystems
PSE Parc Scientifique EPFL
1015 Lausanne, Switzerland
Tel. +41 216938631
Fax +41 216938631
E-mail: s.makohliso@ayanda-biosys.com

Partners

Dr Ants Kurg
Estonian Biocentre
Tartu, Estonia

Prof. Horst Vogel
Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

Majella Maher
National University of Ireland, Galway
Galway, Ireland

Prof. Gerald A. Urban
Albert Ludwigs Universität Freiburg
Freiburg, Germany
FUNCTIONAL GENOMIC CHARACTERISATION OF MOLECULAR DETERMINANTS FOR STAPHYLOCOCCAL FITNESS, VIRULENCE AND DRUG RESISTANCE

BACKGROUND
The spread, survival and prevalence of antibiotic resistant clones of Staphylococcus aureus represent an important problem for human health. It is crucial to determine the key parameters required for virulence, nasal colonisation and survival in the environment in order to elucidate how these combine to produce epidemic strains. This requires a detailed knowledge of the bacterial components necessary for the above processes. The StaphDynamics project aims to define these bacterial components, which in themselves may form novel targets for prevention and control.

Problem:
Infections with antibiotic resistant microorganisms dramatically decreases the quality of life of patients and leads to a higher morbidity in specific risk groups, such as the elderly, immune-suppressed patients and children.

AIMS
The primary aim of StaphDynamics is to identify important molecular determinants for fitness, virulence and drug resistance of S. aureus that may serve as future targets for drug and vaccine development, and to fight staphylococcal infections.

EXPECTED RESULTS
The StaphDynamics results include:

1. identification of novel molecular signatures of resistant clones;
2. identification and validation of novel targets for drug and vaccine development;
3. development of informed strategies for combating resistant clones at the European level.

Potential applications:
StaphDynamics will create an important knowledge base needed to foster European competitiveness in the area of antibiotics research.

Project Coordinator
Prof. Jan Maarten van Dijl
University Medical Center Groningen (UMCG)
Department of Medical Microbiology
Hanzeplein 1
P.O. Box 30 001
9700 RB Groningen, Netherlands
Tel. +31 503 633 079
Fax +31 503 633 528
E-mail: j.m.van.dijl@med.umcg.nl
Partners

Prof. Dr Friedrich Götz
University Tübingen
Tübingen, Germany

Prof. Jiri Doskar
Department of Genetics and Molecular Biology
Brno, Czech Republic

Prof. Simon J. Foster
University of Sheffield
Sheffield, England, UK

Prof. Dr Jörg Hacker and Dr Knut Ohlsen
Institut für Molekulare Infektionsbiologie
Würzburg, Germany

Prof. Dr Michael Hecker
and Dr Susanne Engelmann
Ernst-Moritz-Arndt Universität
Greifswald, Germany

Dr Iñigo Lasa
Universidad Publica de Navarra / Consejo
Superior de Investigaciones Científicas
Pamplona, Spain

Prof. Tarek Msadek
Institut Pasteur
Paris, France

Prof. Hajo Grundmann
European Antimicrobial Resistance Surveillance System
Bilthoven, Netherlands

Dr Karl-Heinz Wiesmüller
and Dr Renate Spohn
EMC microcollections GmbH
Tübingen, Germany

Dr Tjibbe Bosma
Biomade Technology
Groningen, Netherlands

Dr Carolin Petry
Genmedics GmbH
Tübingen, Germany
BACKGROUND
The bacterial protein secretion process can benefit human health through the biotechnological production of biopharmaceuticals, but secreted bacterial toxins and virulence factors represent a major threat as well. The Twin-arginine translocation (Tat) machinery represents a recently discovered yet widely conserved system for bacterial protein secretion.

The Tat machine project sought to eliminate existing bottlenecks in the Tat nanomachine that limit biopharmaceutical production in Bacillus, E. coli and Streptomyces, as well as to characterise the structure and function of Tat nanomachines from selected Gram-positive and Gram-negative bacteria.

Problem:
The Tat protein transporter system differs from all other known protein translocases. The system has significant potential for biomedical and biotechnological research and exploitation.

AIMS
The aims of Tat machine included:

- exploiting the unique abilities of the system for the production of biomedically important, heterologous proteins;
- solving the three-dimensional (3D) structure of representative Tat machines.

EXPECTED AND OBTAINED RESULTS
The deliverables of Tat machine include:

- development of super-secreting strains of B. subtilis and Streptomyces coelicolor, capable of exporting heterologous proteins with high efficiency;
- understanding of the overall role of Tat in a limited series of pathogenic bacteria;
- in-depth understanding of the Tat translocation mechanism was achieved by a combined biochemical/genetic analysis of the Tat translocation process.

Potential applications:
Tat machine will provide solutions to the industry and create a knowledge base that will foster European competitiveness in the area of antibiot-}
ics and biotechnology research.

Project Coordinator
Prof. Jan Maarten van Dijl
University Medical Center Groningen (UMCG)
Department of Medical Microbiology
Hanzeplein 1
P.O. Box 30 001
9700 RB Groningen, Netherlands
Tel. +31 503633079
Fax +31 503633528
E-mail: j.m.van.dijl@med.umcg.nl

Management Assistant
Dr S. Bron
University of Groningen
Haren, Netherlands

Project number: LSHG-CT-2004-005257 EC contribution: €2 000 000 Duration: 48 months Type: Specific Targeted Research Project Starting date: 1 November 2004
Partners

Prof. C. Robinson
University of Warwick
Warwick, England, UK

Prof. O.P. Kuipers
University of Groningen
Haren, Netherlands

Dr M. Kolkman
Genencor International BV
Leiden, Netherlands

Prof. Dr M. Müller
Universitätsklinikum Freiburg
Freiburg, Germany

Prof. T. Palmer
University of Dundee
Dundee, Scotland, UK

Dr L. F. Wu
Laboratoire de Chimie Bactérienne (LCB)
UPR9043, CNRS
Marseille, France

Prof. Dr M. Hecker
Ernst-Moritz-Arndt-Universitaet Greifswald
Greifswald, Germany

Prof. Dr W. Kühlbrandt and Dr K. Model
Max-Planck Institute of Biophysics
Frankfurt am Main, Germany

Prof. S. Iwata and Dr L. Carpenter
Imperial College of Science, Technology and Medicine
London, England, UK

Prof. Dr R. Freudl
Forschungszentrum Jülich GmbH
Jülich, Germany
ESTABLISHING A TB TREATMENT EFFICACY MARKER

BACKGROUND
The focus of the TB Treatment Marker project was on investigating the possibility of creating a novel approach to monitor tuberculosis (TB) treatment efficacy, which would lead to a more rational use of drugs, and reduce the incidences of resistance to TB medication.

Since the war in the 1990s in Guinea Bissau, laboratory facilities for diagnosing TB have been inadequate. As part of the project, the consortium built a functional TB laboratory.

Of some 2,000 screened TB suspects, 400 diagnosed with active TB were included in the study by December 2006 and an 8-month treatment follow-up was carried out.

Problem:
No method to successfully monitor the efficacy of TB treatment currently exists. Upon diagnosis, patients are treated for TB with a course of medication lasting approximately six to nine months. If the primary treatment fails, a stringent and time-consuming analysis is made to select appropriate and effective antibiotics as a second-line treatment.

Mortality is high in both TB suspects and in TB patients during treatment, and simple and inexpensive methods for identifying individuals at risk are warranted.

AIMS
TB Treatment Marker aimed to determine whether the blood plasma protein suPAR (soluble urokinase Plasminogen Activator Receptor) is elevated in patients with active TB, and carries a prognostic value during the treatment period, as well as whether suPAR levels decrease in patients that respond to therapy.

EXPECTED RESULTS
An analysis of treatment efficacy and mortality in TB suspects and during the TB treatment programme were carried out at the end of 2007.

Potential applications:
A simple laboratory analysis that can reduce mortality and shed light on TB treatment efficacy can have a major influence on the lifetime expectancy and quality of life of people in Guinea Bissau and in all areas of the world where TB and HIV (human immunodeficiency virus) cause despair and mortality.

Project Coordinator
Dr Jesper Eugen-Olsen
ViroGates A/S
Scion-DTU
Diplomvej 377
2800 Kgs. Lyngby, Denmark
Tel. +45 88708258
Fax +45 88708090
E-mail: jeo@virogates.com

Partners
Ian Laquian
ViroGates A/S
Kgs. Lyngby, Denmark

Dr Peter Aaby
The Bandim Health Project
Copenhagen, Denmark

Dr Paulo Rabna
Bissau, Guinea-Bissau
Guinea-Bissau

Dr Christian Wejse
Danish Medical Association
Copenhagen, Denmark
DEVELOPMENT OF A MOLECULAR PLATFORM
FOR THE SIMULTANEOUS DETECTION OF
MYCOBACTERIUM TUBERCULOSIS RESISTANCE
TO RIFAMPICIN AND FLUOROQUINOLONES

BACKGROUND

Treatment success and containment of drug-resistant tuberculosis (TB) rely on
a timely laboratory diagnosis. In view of this, a versatile and user-friendly molecular
platform was proposed for the identification of *Mycobacterium tuberculosis* in
clinical specimens and the simultaneous detection of resistance to two key anti-TB
agents: rifampicin and fluoroquinolones.

Problem:
The management and control of multidrug resistant tuberculosis (MDRTB) relies on sol-
?id laboratory support. The spread of MDRTB can be prevented only if patients with drug-
 resistant disease are detected and treated with a combination of effective drugs.

AIMS

TB-DRUG OLIGOCOLOR targeted the de-
velopment of a modification of the DIAPOPS
technique (detection of the immobilised
amplified product in one phase system)
for the early detection of resistance to
rifampicin in *M. tuberculosis*, as well as the
detection of resistance to fluoroquinolones.
It also aimed to perform a small preclinical
evaluation in three laboratories to evalu-
ate the combined platform directly using
clinical samples and early liquid cultures.

EXPECTED RESULTS

TB-DRUG OLIGOCOLOR antici-
pated the following results:

- development of a molecular tool
 for the rapid detection of rifampicin
 resistance in *M. tuberculosis* di-
 rectly from clinical samples;
- integration into a single solid support
 of the capacity to detect resistance
 to fluoroquinolone and confirm the
 identification of *M. tuberculosis*.

Potential applications:
The analysis of genes involved in the resist-
ance to key anti-TB agents will enhance
the understanding of microbial genetic
events leading to TB treatment failure.
Additionally, mutated gene sequences will
become available for eventual use in drug
target research and tool development.

Project Coordinator

Prof. Françoise Portaels
Mycobacteriology Unit
Prince Leopold Institute of Tropical Medicine
Nationalestraat 155
2000 Antwerp, Belgium
Tel. +32 32476317
Fax +32 32476333
E-mail: portaels@itg.be

Partners

Dr Dick Van Soolingen
National Institute for Public Health
and the Environment
Bilthoven, Netherlands

Dr. Sven Hoffner
Swedish Institute for Infectious Disease Control
Solna, Sweden

Patricia Del Portillo
Corporación CorpoGen
Bogotá, Colombia

Dr. Viviana Ritacco
INEI-ANLIS ‘Carlos G. Malbrán’
Buenos Aires, Argentina

Nora Morcillo
Hospital Zonal Especializado
de Agudos y Cronicos

Dr. Cetrángolo
Vicente Lopez (Buenos Aires), Argentina
BACKGROUND

TRAINAU is a multidisciplinary Early Stage Training site on identification, characterisation and assessment of public health risks associated with non-human use of antimicrobials. The international dimension of TRAINAU is ensured through the strong networks of the host group with European universities, research institutions as well as with international organisations. Fellows will establish links across Europe, stimulating future international collaborations and producing positive effects on their future careers.

TRAINAU contributes to coordination of research training in the area of microbiological risk assessment and enables dissemination of principles and methods for surveillance of antimicrobial usage and resistance to other European countries. TRAINAU also contributes to reinforce the capacity of emerging research groups through enhancing the scientific capacities of the fellows.

Problem:

Non-human use of antimicrobials, in particular the use in food animals, contributes to the public health problems in relation to antimicrobial resistant human infections. Control efforts should be guided by microbial risk assessment in an integrated food chain perspective.

AIMS

TRAINAU’s objectives are to answer the following main questions in order to assess the risks of non-human antimicrobial usage:

- To which extent do different patterns of antimicrobial drug use select for the occurrence of resistant bacteria in animals?
- By which routes and at what rates do resistant bacteria and resistance genes transmit from animals to humans?
- What is the current and potential future public health impact of resistant bacteria and resistance determinants from food animals?

EXPECTED AND OBTAINED RESULTS

The research activities have generated data and developed new methods in order to answer questions that are of crucial importance for conducting risk-based evaluations. The research activities have been focused on specific antimicrobial classes used in animals and the preliminary results are very promising, and by far exceed the expected outcome.

The epidemiological relationships between bacterial isolates from animals, food, and humans have been determined by molecular methods. Resistance genes and the associated mobile genetic elements have been characterised and horizontal transfer between animal and human bacterial populations have been investigated.
The project’s fellows are collaborating on a quantitative risk assessment using their obtained results and the present literature; the outcome of this assessment looks promising but is still under further preparation. A full list of publications directly related to the programme is also available on the website.

Potential applications:
The Early Stage Training programme will strive to continue the activities in a postdoc-based EU research programme.

Project Coordinator
Prof. Henrik C. Wegener
University of Copenhagen
Faculty of Life Sciences
Bülowsvej 17
1870 Frederiksberg C, Denmark
E-mail: hcw@food.dtu.dk

Partners
Prof. Frank Aarestrup
Technical University of Denmark
Søborg, Denmark

Prof. Bent Halling-Sørensen
University of Copenhagen
Copenhagen, Denmark

Dr Anette Hammerum
Statens Serum Institut
Copenhagen S, Denmark
TARGETING REPLICATION AND INTEGRATION OF HIV

BACKGROUND
TRIoH developed several novel compounds targeting HIV entry, nucleocapsid, RT or integrase. The discovery of LEDGF/p75 as a major novel target for HIV drug discovery is one of the most exciting new directions in HIV molecular virology originating from TRIoH in recent years. This work has received international appraisal and offers excellent options for economic valorisation in the near future.

AIMS
The general objective was to integrate the various research efforts from different European partners on novel anti-HIV molecules targeting viral replication and integration.

OBTAINED RESULTS
The results obtained by TRIoH include the following.

- Optimisation and use of a multi-parametric assay for entry/fusion was successful to identify new compounds against virus attachment, interaction with CD4, HIV co-receptors, gp41-dependent fusion and HIV-envelope-induced cell-death.
- Optimisation and use of new NC assays have been successful in identifying compounds with anti-NC activity in vitro. Some hits show anti-HIV activity in a multiple round replication assay.

Potential applications:
- Scientific publications in peer-reviewed journals and presentations at international meetings;
- A website for communication with the scientific community and general public;
- An initiative towards AIDS in developing countries;
- The creation of
- The TRIoH training programme was established to organized practical trainings, theoretical classes and a yearly symposium for young researchers within TRIoH and African and Indian students, including the funding of a young researcher special award.

Project Coordinator
Prof. Myriam Witvrouw
Katholieke Universiteit Leuven
Molecular Medicine
Oude Markt 13
3000 Leuven, Belgium
Tel. +32 16322170
Fax +32 16322131
E-mail: myriam.witvrouw@uz.kuleuven.be

Partners
Dr. Zeger Debyser
Katholieke Universiteit Leuven
Leuven, Belgium

Dr. José A. Esté
Fundació irsiCaixa
Badalona, Spain

Dr. Jean-Luc Darlix
INSERM – ENS
Lyon, France

Dr. Jaume Vilarrasa
Universitat Barcelona
Barcelona, Spain

- Project number: LSHB-CT-2003-503480
- EC contribution: €11 610 500
- Duration: 36 months + 6 months extension
- Type: Specific Targeted Research Project
- Starting date: 1 January 2004

http://www.u-psud.fr/

BACKGROUND
In China, a large fraction of the population is infected by Mycobacterium tuberculosis (MTB), the bacteria responsible for tuberculosis (TB), with 500 000 new cases reported each year. A significant proportion of strains is resistant to multiple drugs used to treat this disease. The attenuated Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the only available vaccine against TB, but it does not provide consistent protection.

Tuberculosis China investigated MTB genetic diversity in China (analysis of 6 000 strains from 31 provinces). The goal was to characterise the dominant bacterial populations in China and to ascertain whether the dispersion of the Beijing type is of clonal origin.

This work was the subject of Wan Kanglin’s PhD thesis (Université Paris-Sud, 8 October 2008) under the co-supervision of Dr G. Vergnaud and Prof. Xu Jianguo.

Problem:
A third of the world’s population, mostly in poor countries, is currently latently infected by MTB. The extensive use of the BCG vaccine has not led to eradication of this disease; on the contrary, it may have allowed some strains to emerge, especially in countries where the use of drugs was inadequate. In China, a particular strain family called the ‘Beijing family’ has been found to predominate (van Soolingen et al., 1995).

AIMS
The objectives of the Tuberculosis China project were to help identify emerging MTB strains in order to determine their antigenic characteristics and develop a new protective vaccine, and to understand how MTB strains vary and adapt to new treatments or vaccines. This was an ambitious project necessitating serious organisation and a long-term follow-up.

OBTAINED RESULTS
The consortium obtained the following results:

- genetic diversity of MTB strains, allowing a description of prominent bacterial families and their distribution in China (Figure 1);
- role of BCG vaccination in emergence of new TB strains;
- multidrug-resistance (MDR) strains, potentially triggered by the inadequate use of antibiotics.

Potential applications:
Studies are being performed in Beijing to identify MTB antigens and epitopes for new protective vaccines and specific diagnostic reagents. Immunogenicity and protective capacity may be increased by adding to the BCG strains antigens that induce a T-cell response (Pym et al., 2003).

Project Coordinator
Dr. Christine Pourcel
GPMS, Institut de Génétique et Microbiologie, Bât 400, Université Paris Sud-XI
91405 Orsay Cedex
France
Tel: +33 1 69 15 30 01
Fax: +33 1 69 15 66 78
E-mail: christine.pourcel@igmors.u-psud.fr

Partners
Dr. Dick van Soolingen
National Institute of Public Health and the Environment
The Netherlands
UNIFORMITY IN TESTING AND MONITORING HIV RESISTANCE

BACKGROUND
Antiretroviral drugs are increasingly being provided to patients living with the human immunodeficiency virus (HIV) in developing countries. Experience gained in Europe and North America has shown that the use of these drugs dramatically reduced mortality but is also associated with the emergence of drug-resistant HIV.

The EU-funded ‘Strategy to Control Spread of HIV Drug Resistance’ (SPREAD) network gained a leading role in the area of surveillance of HIV drug resistance. Within UNITE-MORE, SPREAD closely cooperated with the World Health Organization (WHO) to support the establishment of a uniform global network for HIV drug resistance surveillance.

UNITE-MORE actively contributed to the further development, transfer and take-up of the SPREAD clinical laboratory guidelines and systems at global level. It also contributed to the objectives of the European Research Area (ERA), increased networking at global level and raising the scientific and technological profile of Europe.

Problem:
If the further spread of HIV drug resistance is not controlled, the fight against the acquired immune deficiency syndrome (AIDS) pandemic could be seriously hampered.

AIMS
UNITE-MORE aimed to support the establishment of a uniform global network for HIV drug resistance surveillance, including standardised laboratory procedures and quality assurance programmes.

EXPECTED RESULTS
support of the establishment of a uniform global network for HIV drug resistance surveillance, UNITE-MORE standardised laboratory procedures and quality assurance programmes.

UNITE-MORE will act as a key force in global efforts on HIV drug resistance surveillance using existing European activities under SPREAD, and the WHO Global HIV Drug Resistance programme within the ‘3 by 5 initiative’ as a strong and solid basis. In addition, UNITE-MORE will contribute to the dissemination of knowledge across countries in four continents.

Potential applications:
The surveillance network could provide governments, scientists and policymakers with relevant and comparable global data on the prevalence, transmission and trends of HIV drug resistance. It could provide a resource for addressing key questions of HIV drug-resistance patterns and spread related to HIV genetic diversity.

Project Coordinator
Dr Charles A. B. Boucher
University Medical Center Utrecht
Department of Virology G04-614
Heidelbergaan 100
3584 CX Utrecht, Netherlands
Tel. + 31 302506526
Fax + 31 302505426
E-mail: c.boucher@azu.nl

Partners
Dr David Sutherland
World Health Organization
Geneva, Switzerland

Project number: LSHP-CT-2004-516030 ■ EC contribution: €375 000 ■ Duration: 24 months ■ Type: Specific Support Action ■ Starting date: 1 January 2005
EUROPEAN VIGILANCE NETWORK FOR THE MANAGEMENT OF ANTIVIRAL DRUG RESISTANCE

http://www.virgil-net.org

BACKGROUND
VIRGIL was the first European surveillance network capable of addressing current and emerging antiviral drugs resistance developments in the field of influenza and viral hepatitis. VIRGIL sought to integrate the fragmented European capacities and major expertise in the field into a single coherent Network of Excellence.

Problem:
The high frequency of drug resistance, which may be due to the patient (host), the virus or a combination of both, is a consequence of the successful development of new antiviral therapies in recent decades.

AIMS
The primary goal was to gradually integrate resources and skills dispersed throughout Europe to achieve common research objectives, including the study of the socioeconomic dimension of antiviral drug resistance.

EXPECTED AND OBTAINED RESULTS
The preliminary results obtained on antiviral drugs used to treat influenza and hepatitis B and C demonstrate the pioneer role in Europe of an integrated approach linking basic research and clinical research.

VIRGIL teams were the first to precisely characterise resistances to newly marketed antiviral drugs (adefovir, entecavir and multi resistant strains) for the treatment of hepatitis B. As a result of the links forged between VIRGIL and scientific societies such as EASL (European Association for the Study of the Liver), these results could be adopted by health authorities for the establishment of official guidelines.

In the case of hepatitis C, several in vitro studies identified synergies and antagonisms between antiviral molecules, new more effective interferons, as well as new viral targets for treatments.

A number of standardised criteria for data collection in clinical trials have been established allowing for a comparison of the results obtained in various trials.

Several clinical trials have been initiated on these databases by VIRGIL to characterise resistances of HBV to new molecules such as entecavir or tenofovir, and resistances of HCV to dual therapy with peg-interferon and ribavirin.

VIRGIL plans to develop centralised clinical trial services with major pharmaceutical groups and promote the integration of SMEs (biotechs) in the European economic tissue by linking them with various regions of excellence represented by VIRGIL’s partners.

Potential applications:
The skills and infrastructures developed in the context of this programme could be mobilised in the event of an influenza pandemic. All EU Member States have existing stocks of oseltamivir. These drugs will only be useful if they are used rationally, and if the emergence of resistant viral strains is controlled by continuous surveillance set up throughout the EU according to a sufficiently dense network.
Project Coordinator

Prof. Fabien Zoulim
INSERM Unit 271 and Liver Dept.
Institut Universitaire de France
151 Cours Albert Thomas
69003 Lyon, France
Tel. +33 4 72 68 19 71
E-mail: zoulim@lyon.inserm.fr

Project Manager

Dr. Jerome Weinbach
Inserm-Transfert
7 Rue Watt
75 013 Paris, France
Tel. +33 1 55 03 01 39
E-mail: jerome.weinbach@inserm-transfert.fr

Partners

Prof. Christian Trepo and
Prof. Christian Brechot
INSERM
Lyon, France

Prof. Bruno Lina
Université Claude Bernard Lyon 1
Lyon, France

Prof. Michael Manns
Medizinische Hochschule Hannover
Hannover, Germany

Prof. Jean-Michel Pawlotsky
Université Paris XII-Val-de-Marne
Paris, France

Dr. Maria Zambon and Dr. Pat Cane
Health Protection Agency
- Central Public Health Laboratory
London, England, UK

Prof. Ralf Bartenschlager
Universitätsklinikum Heidelberg
Heidelberg, Germany

Dr. Alan Hay
British Medical Research Council
London, England, UK

Dr. Gerd Pape, Dr. Helmut Diepolder,
Dr. Thomas Mueller
Ludwig Maximilians Universität München
Munich, Germany

Dr. Johannes Bode
Universitätsklinikum Düsseldorf
Düsseldorf, Germany

Dr. Johan Neyts
Katholieke Universiteit Leuven
Leuven, Belgium

Prof. Willy Spaan
Leiden University Medical Center
Leiden, Netherlands

Prof. John Oxford
Retroscreen Virology Ltd
London, England, UK

Dr. Jean-Marie Cohen
Réseaux d’Observation des Maladies et des Epidémies (OPEN ROME)
Paris, France

Dr. Solko Schalm
Erasmus Medical Centre Rotterdam
Rotterdam, Netherlands

Dr. Alfredo Alberti
Venetian Institute of Molecular Medicine
Padova, Italy

Dr. Raffaele Esteban Mur and Dr. Maria Buti
Hospital Universitario Valle Hebrón
Barcelona, Spain

Dr. Xavier Forns and Dr. Jordi Bruix
Hospital Clinic Provincial de Barcelona
Barcelona, Spain

Dr. Georgios Germanidis
Papageorgiou General Hospital
Thessalonica, Greece

Dr. David Mutimer
The University of Birmingham
Birmingham, England, UK

Dr. Francesco Negro
Université de Genève
Geneva, Switzerland

Dr. Krzysztof Bielawski
University of Gdansk
Gdansk, Poland

Prof. Etienne Sokal
Université Catholique de Louvain
Louvain, Belgium

Dr. Vincente Soriano
AEIS-Hospital Carlos III
Madrid, Spain

Prof. Howard Thomas
and Dr. Peter Karayannis
Imperial College of Science,
Technology and Medicine
London, England, UK

Prof. Stefan Zeuzem
Universität des Saarlandes
Saarbrücken, Germany

Dr. Isabella Donatelli
Istituto Superiore di Sanità
Rome, Italy

Prof. Sylvie van der Werf
Institut Pasteur
Paris, France

Dr. Oliver Planz
Federal Research Centre
for Virus Diseases of Animals
Tübingen
Germany

Dr. Hans Dieter Klenk and Wolfgang Garten
Philips-Universität Marburg
Marburg, Germany
Dr. Juna Ortin
Consejo Superior de Investigaciones Cientificas
Madrid, Spain

Dr. Robertus Ruigrok
Université Joseph Fourier, Grenoble I
Grenoble, France

Dr. Hubert Blum, Dr. Thomas Baumert, Dr. Michael Nasal, Dr. Darius Moradpour
Universitätsklinikum Freiburg
Freiburg, Germany

Uppsala University
Helena Danielson
Uppsala, Sweden

Prof. Luca Guidotti
Fondazione Centro San Raffaele Del Monte Tabor
Milan, Italy

Prof. Joerg Petersen
Universitätsklinikum Hamburg – Eppendorf
Hamburg, Germany

Dr. Stéphane Bressanelli and Dr. Gilbert Deléage
Centre National de la Recherche Scientifique (CNRS)
Paris, France

Dr. Nicole Zitzmann and Dr. Paul Klenerman
Chancellor, Masters and Scholars of the University of Oxford
Oxford, England, UK

Dr. Stephan Pleschka
Justus-Liebig-Universitaet-Giessen
Giessen, Germany

Dr. Thorsten Wolff
Robert Koch-Institute
Berlin, Germany

Dr. Carlo Ferrari and Dr. Gabriele Missale
Azienda Ospedaliera di Parma
Parma, Italy

Dr. Thomas Berg
Universitätshsklinikum Berlin
Berlin, Germany

Dr. Matti Saellberg and Dr. Ola Weiland
Karolinska Institute
Solna, Sweden

Dr. Mark Thursz
Riotech Pharmaceuticals Ltd
London, England, UK

Dr. Guiseppe Pastore and Dr. Teresa Santantonio
University of Bari
Bari, Italy

Dr. Juerg Reichen and Dr. Andreas Cerny
University of Bern
Bern, Switzerland

Dr. Anders Vahne
Tripep AB
Huddinge, Sweden

Dr. Gerhard Puerstinger
University of Innsbruck
Innsbruck, Austria

Dr. Gilles Avenard
BioAlliance Pharma SA
Paris, France

Dr. Guy Vernet and Dr. Glauca Baccala
bioMérieux SA
Marcy l’Etoile, France

Prof. Avidan Neumann
Bar-Ilan University
Ramat Gan, Israel

Dr. Bryan Grenfell and Dr. Derek Smith
Chancellor, Masters and Scholars of the University of Cambridge
Cambridge, England, UK

Dr. John Paget
Netherlands Institute for Health Services Research
Utrecht, Netherlands

Dr. Jerome Weinbach
Inserm-Transfert SA
Paris, France

Dr. Massimo Levrero
Fondazione Andrea Cesalpino
Arezzo, Italy

Dr. Stephan Ludwig
University of Muenster
Muenster, Germany

Mr. Evert-Ben Van Veen
MedlawConsult
The Hague, Netherlands

Prof. Graham Foster
Queen Mary and Westfield College
London, England, UK

Dr. Jean-Claude Schmit
Centre de Recherche Public-Santé du Luxembourg
Val Fleuri, Luxembourg

Dr. Christian Trautwein
University of Aachen
Aachen, Denmark

VIRGIL associate members:
Russia, Cyprus and Turkey

Prof. Vladimir Chulanov
Center for Molecular Diagnostics
Moscow, Russia

Prof. Selim Badur
istanbul Üniversitesi
Istanbul, Turkey

Prof. Leondios G. Kostrikis
University of Cyprus
Nicosia, Cyprus
A VIRTUAL LAB FOR DECISION SUPPORT IN VIRAL DISEASES TREATMENT

BACKGROUND
ViroLab offers a unique opportunity as a blueprint for the many potential diseases where genetic information will become important in future years. The virtual laboratory supports tools for statistical analysis, visualisation, modelling and simulation to predict the temporal virological and immunological response of viruses with complex mutation patterns to drug therapy.

AIMS
The main objectives of ViroLab included:

- a virtual organisation that binds the various components of ViroLab;
- a virtual laboratory infrastructure for transparent workflow, data access, experimental execution and collaboration support;
- epidemiological validation and dissemination of results to stakeholders.

EXPECTED RESULTS
The collaborative research will result in a virtual laboratory for decision support in infectious diseases treatment. New, valuable clinical data and information on treatment of HIV-infected persons will emerge, providing essential insights into the prevalence of drug resistance patterns in treated individuals on a continuous basis. It is of crucial importance for future development of new drugs effective against drug-resistant HIV.

Potential applications:
ViroLab will reliably predict drug susceptibility and virological response, and provide researchers with a support environment to study trends at HIV resistance on individual and population (epidemiological) levels.

Project Coordinator
Prof. Peter Sloot
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam, Netherlands
Tel. +31 205257537
Fax +31 205257419
E-mail: sloot@science.uva.nl

Partners
Prof. Charles Boucher
and Dr David van de Vijver
University Medical Center Utrecht
Utrecht, Netherlands

Dipl. Ing. Stefan Wesner
High Performance Computing Center Stuttgart
Stuttgart, Germany

Dr Andrea de Luca
Institute of Clinical Infectious Diseases,
Catholic University
Rome, Italy

Dr Lidia Ruiz Badalona
Institute de recerca de la SIDA
Barcelona, Spain

Dr Carlo Torti
University of Brescia
Brescia, Italy

Prof. Anne-Mieke Vandamme
Catholic University Leuven
Leuven, Belgium

Dr Viktor Müller
Eötvös Loránd University ELTE
Budapest, Hungary

Pawel Plaszczak
GridwiseTech SP.z.o.o
Krakow, Poland

Dr Marian Bubak
University of Science and Technology
Institute of Computer Science and Academic Computer Centre CYFRONET
Krakow, Poland

Prof. Peter Coveney
University College London
London, England, UK

Dr Wilco Keulen
Virology Education BV
Utrecht, Netherlands
VITAMIN BIOSYNTHESIS AS A TARGET FOR ANTIMALARIAL THERAPY

http://www.hyg.uni-heidelberg.de/vitbiomal

BACKGROUND
Plasmodium falciparum infections place a tremendous burden on global health, which is becoming increasingly aggravated by the worrying rise in P. falciparum drug resistance, making the discovery of novel intervention strategies imperative. The VITBIOMAL project explored the inhibition of a recently identified parasite vitamin biosynthesis pathway as a therapeutic strategy and assessed its potential as drug target.

Problem:
With 300–500 million clinical cases and 1–3 million deaths a year, malaria is one of the most fatal tropical diseases; there is an urgent need to develop and pursue new therapeutic strategies.

AIMS
The aim of VITBIOMAL was to specifically assess vitamin B₆ de novo biosynthesis of Plasmodium as a target for antimalarial drug development.

OBTAINED RESULTS
The results obtained by VITBIOMAL include:

- generation of knockout parasites of the Pdx1 (vitamin B₆ biosynthesis) and of the pdxK gene (vitamin B6 uptake/salvage) in the mouse malaria model system;
- growth delay of the erythrocytic forms;
- massive reduction of sporozoite numbers ranging from 90 (Pdx1 knockout) to 99% (pdxK knockout);
- depletion of B6 vitamers from the growth medium had no effect on the development of P. falciparum blood stage forms, indicating that vitamin B6 biosynthesis is sufficient to cover the needs of pyridoxal 5-phosphate;
- determination of structures: Pdx2 from P. falciparum (1.6 Å), Pdx1 from Bacillus subtilis (to 2.0 Å), Pdx2 from B. subtilis in free (1.7 Å) and inhibitor-complexed state (2.2 Å) and the ternary complex of B. subtilis Pdx1:Pdx2 with substrate glutamine (2.1 Å) (3, 6);
- construction and testing of a homology model of the plasmodial PLP synthase.

Potential applications:
The partners envision antimalarial and possibly antiapicomplexan and/or antibacterial drug development.

Project Coordinator
Dr Barbara Kappes
Universitätsklinikum Heidelberg
Abteilung Parasitologie
Im Neuenheimer Feld 324
69120 Heidelberg, Germany
Tel. +49 6221561774
Fax +49 6221564643
E-mail: barbara.kappes@urz.uni-heidelberg.de

Partners
Prof. Sylke Müller
University of Glasgow
Glasgow, Scotland, UK

Prof. Dr Teresa Fitzpatrick
University of Zürich
Zurich, Switzerland

Prof. Peter Macheroux
Institute of Biochemistry
Graz, Austria

Dr Ivo Tews
Biochemie-Zentrum Heidelberg
der Universität Heidelberg (BZH)
Heidelberg, Germany

Project number: LSHP-CT-2005-012158 ■ EC contribution: €1 000 000 ■ Duration: 24 months ■ Type: Specific Targeted Research Project ■ Starting date: 1 June 2005
INDEX OF ACRONYMS

A
- **ABS INTERNATIONAL**: 8
- **ACE**: 10
- **ACE-ART**: 12
- **ActinoGEN**: 14
- **AMIS**: 16
- **ANTIBIOTARGET**: 17

B
- **BACELL HEALTH**: 19
- **BURDEN**: 21

C
- **CanTrain**: 22
- **CHAMP**: 24
- **COBRA**: 25
- **COMBIG-TOP**: 27
- **CombiGyrase**: 29
- **CRAB**: 31

D
- **DRESP2**: 32

E
- **e-Bug**: 33
- **EACCAD**: 35
- **EAR**: 36
- **EARSS**: 37
- **ERAPharm**: 39
- **ESAC**: 41
- **ESSTI**: 43
- **ET-PA**: 45
- **EU-IBIS**: 46
- **EUCAST**: 49
- **EUR-INTAFAR**: 51
- **EURESFUN**: 53
- **EuResist**: 55
- **Eurofungbase**: 57
- **EPG**: 59
- **EuropeHIVResistance**: 60
- **EuroTB**: 62

F
- **FUNGWALL**: 64

G
- **GENOSEPT**: 66
- **GRACE**: 67

H
- **HAPPY AUDIT**: 69

I
- **IPSE**: 71

L
- **LeishEpiNetSA**: 73

M
- **MagRSA**: 75
- **MalariaPorin**: 76
- **MANASP**: 77
- **micro-MATRIX**: 78
- **MOSAR**: 79

N
- **NewHiv Targets**: 81
- **NEWTBDRUGS**: 82
- **NM4TB**: 83
- **NPARI**: 85

P
- **Phagevet-P**: 86
- **PNEUMOPEP**: 88
- **PREVIS**: 89

R
- **READ-UP**: 91
- **REBAVAC**: 92
- **REPLACE**: 93

S
- **SAFEWASTES**: 95
- **SavinMucoPath**: 96
- **SIGMAL**: 98
- **SLIC**: 100
- **StaphDynamics**: 101

T
- **Tat machine**: 103
- **TB Treatment Marker**: 105
- **TB-DRUG OLIGOCOLOR**: 106
- **TRAINAU**: 107
- **TRIoH**: 109
- **Tuberculosis China**: 111

U
- **UNITE-MORE**: 112

V
- **VIRGIL**: 113
- **VIROLAB**: 116
- **VITBIOMAL**: 117
INDEX OF COORDINATORS

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dan I. Andersson (EAR)</td>
<td>Prof. Jean-Paul Latge (FUNGWALL)</td>
</tr>
<tr>
<td>Prof. Peter Andrew (PNEUMOPEP)</td>
<td>Dr Solomzi Makohliso (SLIO)</td>
</tr>
<tr>
<td>Dr Joana Azeredo (Phagevet-P)</td>
<td>Dr Nathalie Mathy (GENOSEPT)</td>
</tr>
<tr>
<td>Dr. Christian Brun-Buisson (MOSAR)</td>
<td>Dr Didier Mazel (CRAB)</td>
</tr>
<tr>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr Eric Beitz (MalariaPorin)</td>
<td>Dr Clodina A.M. McNulty (e-Bug)</td>
</tr>
<tr>
<td>Prof. Julian Bion (GENOSEPT)</td>
<td>Prof. Michael A. Miles (LaishEpiNetSA)</td>
</tr>
<tr>
<td>Dr Mike Birch (NPARI)</td>
<td>Prof. Lorenzo Morelli (ACE-ART)</td>
</tr>
<tr>
<td>Prof. Marc J. M. Bonten (ACE)</td>
<td></td>
</tr>
<tr>
<td>Dr Charles A. B. Boucher (UNITE-MORE)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr Charles Boucher (EuropeHIVResistance)</td>
<td></td>
</tr>
<tr>
<td>Dr. Ed J. Kuijper (EACCAD)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>Prof. Miguel Cámara (ANTIBIOTARGET)</td>
<td>Prof. Jean-Paul Latge (FUNGWALL)</td>
</tr>
<tr>
<td>Manny Chandra (EU-IBIS)</td>
<td>Dr Solomzi Makohliso (SLIO)</td>
</tr>
<tr>
<td>Prof. Stewart T. Cole (NM4TB)</td>
<td>Dr Nathalie Mathy (GENOSEPT)</td>
</tr>
<tr>
<td>D</td>
<td>O</td>
</tr>
<tr>
<td>Prof. Christian Doerig (SIGMAL)</td>
<td>Dr Serge Petit (READ-UP)</td>
</tr>
<tr>
<td>Prof. Paul Dyson (ActinoGEN)</td>
<td>Prof. Françoise Portaels (TB-DRUG OligoCOLOR)</td>
</tr>
<tr>
<td>E</td>
<td>P</td>
</tr>
<tr>
<td>Prof. Hermann Einsele (MANASP)</td>
<td>Dr. Marco R. Oggioni (DRESP2)</td>
</tr>
<tr>
<td>Dr Jesper Eugen-Olsen (TB Treatment Marker)</td>
<td>Dr. Marco R. Oggioni (DRESP2)</td>
</tr>
<tr>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Prof. Jacques Fabry (IPSE)</td>
<td>Mary Ramsay (EU-IBIS)</td>
</tr>
<tr>
<td>Dr Dennis Falzon (EuroTB)</td>
<td>Dr. Gian Maria Rossolini (DRESP2)</td>
</tr>
<tr>
<td>Mag. Annegret Frank (ABS INTERNATIONAL)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr Uwe Frank (BURDEN)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr Chlodwig Franz (SAFEWASTES)</td>
<td></td>
</tr>
<tr>
<td>Prof. Jean-Marie Frère (EUR-INTAFAR)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>Prof. Dr Roland Gareis (ABS INTENTIONAL)</td>
<td>Prof. Dominique Sangiard (EURESFUN)</td>
</tr>
<tr>
<td>Prof. Herman Goossens (ESAC, Grace)</td>
<td>Prof. Jacques Schrenzel (MagRSA)</td>
</tr>
<tr>
<td>Prof. Laurent Gutmann (COBRA)</td>
<td>Dr. Olivier Schwartz (NewHiv Targets)</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>Prof. Dr Jörg Hacker (EPG)</td>
<td>Dr Aldo Tagliabue (REBAVAC)</td>
</tr>
<tr>
<td>Prof. Colin Harwood (BACELL HEALTH)</td>
<td>Dr Edine W. Tiemersma (EARSS)</td>
</tr>
<tr>
<td>Prof. Dr Lutz Heide (CombiGyrase)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>V</td>
</tr>
<tr>
<td>Dr Francesca Incardona (EuResist)</td>
<td>Prof. Cees A.M.J.J. van den Hondel (Eurofungbase)</td>
</tr>
<tr>
<td>Prof. Cathy Ison (ESSTI)</td>
<td>Prof. Patrick Van Dijck (CanTrain)</td>
</tr>
<tr>
<td>K</td>
<td>W</td>
</tr>
<tr>
<td>Gunnar Kahlmeter (EUCAST)</td>
<td>Prof. Jan Maarten van Dijl (StaphDynamics, Tat machine)</td>
</tr>
<tr>
<td>Dr Barbara Kappes (VITBIOMAL)</td>
<td>101, 103</td>
</tr>
<tr>
<td>Dr Thomas Knacker (ER Apharm)</td>
<td>Prof. Th.J.M. Verheij (CHAMP)</td>
</tr>
<tr>
<td>Christian Kuehne (ET-PA)</td>
<td>24</td>
</tr>
<tr>
<td>Dr. Ed J. Kuijper (EACCAD)</td>
<td>Prof. Miguel Vicente (MATRIX)</td>
</tr>
<tr>
<td>L</td>
<td>Z</td>
</tr>
<tr>
<td>Dr Barbara Kappes (VITBIOMAL)</td>
<td>Prof. Fabien Zoulim (VIRGIL)</td>
</tr>
<tr>
<td>Dr. Christian Brun-Buisson (MOSAR)</td>
<td></td>
</tr>
<tr>
<td>Prof. Marc J. M. Bonten (ACE)</td>
<td></td>
</tr>
</tbody>
</table>
How to obtain EU publications

Free publications:
- via EU Bookshop (http://bookshop.europa.eu);
- at the European Commission’s representations or delegations. You can obtain their contact details on the Internet (http://ec.europa.eu) or by sending a fax to +352 2929-42758.

Priced publications:
- via EU Bookshop (http://bookshop.europa.eu);

Priced subscriptions (e.g. annual series of the Official Journal of the European Union and reports of cases before the Court of Justice of the European Union):
The project catalogue contains information about antimicrobial drug resistance projects funded under the Sixth Framework Programme (FP6). It provides an overview of the scientific challenges, the research goals addressed, and the expected outcome of projects. The information presented also shows the involvement and participation of a multitude of small and medium-sized enterprises working in close collaboration with the academic institutions.